Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 474(16): 2749-2761, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687594

RESUMO

Mutations in the skeletal muscle ryanodine receptor (RyR1) cause malignant hyperthermia (MH) and central core disease (CCD), whereas mutations in the cardiac ryanodine receptor (RyR2) lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most disease-associated RyR1 and RyR2 mutations are located in the N-terminal, central, and C-terminal regions of the corresponding ryanodine receptor (RyR) isoform. An increasing body of evidence demonstrates that CPVT-associated RyR2 mutations enhance the propensity for spontaneous Ca2+ release during store Ca2+ overload, a process known as store overload-induced Ca2+ release (SOICR). Considering the similar locations of disease-associated RyR1 and RyR2 mutations in the RyR structure, we hypothesize that like CPVT-associated RyR2 mutations, MH/CCD-associated RyR1 mutations also enhance SOICR. To test this hypothesis, we determined the impact on SOICR of 12 MH/CCD-associated RyR1 mutations E2347-del, R2163H, G2434R, R2435L, R2435H, and R2454H located in the central region, and Y4796C, T4826I, L4838V, A4940T, G4943V, and P4973L located in the C-terminal region of the channel. We found that all these RyR1 mutations reduced the threshold for SOICR. Dantrolene, an acute treatment for MH, suppressed SOICR in HEK293 cells expressing the RyR1 mutants R164C, Y523S, R2136H, R2435H, and Y4796C. Interestingly, carvedilol, a commonly used ß-blocker that suppresses RyR2-mediated SOICR, also inhibits SOICR in these RyR1 mutant HEK293 cells. Therefore, these results indicate that a reduced SOICR threshold is a common defect of MH/CCD-associated RyR1 mutations, and that carvedilol, like dantrolene, can suppress RyR1-mediated SOICR. Clinical studies of the effectiveness of carvedilol as a long-term treatment for MH/CCD or other RyR1-associated disorders may be warranted.


Assuntos
Sinalização do Cálcio , Hipertermia Maligna/genética , Modelos Moleculares , Miopatia da Parte Central/genética , Mutação Puntual , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Antagonistas Adrenérgicos beta/farmacologia , Substituição de Aminoácidos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Carbazóis/farmacologia , Carvedilol , Dantroleno/farmacologia , Transferência Ressonante de Energia de Fluorescência , Predisposição Genética para Doença , Células HEK293 , Humanos , Hipertermia Maligna/tratamento farmacológico , Hipertermia Maligna/metabolismo , Microscopia de Fluorescência , Relaxantes Musculares Centrais/farmacologia , Mutagênese Sítio-Dirigida , Miopatia da Parte Central/metabolismo , Propanolaminas/farmacologia , Conformação Proteica , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Análise de Célula Única
2.
Proc Natl Acad Sci U S A ; 112(23): 7165-70, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26040000

RESUMO

Phospholamban (PLN) is an effective inhibitor of the sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA). Here, we examined PLN stability and degradation in primary cultured mouse neonatal cardiomyocytes (CMNCs) and mouse hearts using immunoblotting, molecular imaging, and [(35)S]methionine pulse-chase experiments, together with lysosome (chloroquine and bafilomycin A1) and autophagic (3-methyladenine and Atg5 siRNA) antagonists. Inhibiting lysosomal and autophagic activities promoted endogenous PLN accumulation, whereas accelerating autophagy with metformin enhanced PLN degradation in CMNCs. This reduction in PLN levels was functionally correlated with an increased rate of SERCA2a activity, accounting for an inotropic effect of metformin. Metabolic labeling reaffirmed that metformin promoted wild-type and R9C PLN degradation. Immunofluorescence showed that PLN and the autophagy marker, microtubule light chain 3, became increasingly colocalized in response to chloroquine and bafilomycin treatments. Mechanistically, pentameric PLN was polyubiquitinylated at the K3 residue and this modification was required for p62-mediated selective autophagy trafficking. Consistently, attenuated autophagic flux in HECT domain and ankyrin repeat-containing E3 ubiquitin protein ligase 1-null mouse hearts was associated with increased PLN levels determined by immunoblots and immunofluorescence. Our study identifies a biological mechanism that traffics PLN to the lysosomes for degradation in mouse hearts.


Assuntos
Autofagia , Proteínas de Ligação ao Cálcio/metabolismo , Metformina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Células HEK293 , Humanos , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteólise , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
3.
Mol Genet Genomic Med ; 2(6): 472-83, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25614869

RESUMO

Whole exome sequencing (WES) was used to determine the primary cause of muscle disorder in a family diagnosed with a mild, undetermined myopathy and malignant hyperthermia (MH) susceptibility (MHS). WES revealed the compound heterozygous mutations, p.Ile235Asn and p.Glu982Lys, in ATP2A1, encoding the sarco(endo)plasmic reticulum Ca(2+) ATPase type 1 (SERCA1), a calcium pump, expressed in fast-twitch muscles. Recessive mutations in ATP2A1 are known to cause Brody myopathy, a rare muscle disorder characterized by exercise-induced impairment of muscle relaxation and stiffness. Analyses of affected muscles showed the absence of SERCA1, but SERCA2 upregulation in slow and fast myofibers, suggesting a compensatory mechanism that partially restores the diminished Ca(2+) transport in Brody myopathy. This compensatory adaptation to the lack of SERCA1 Ca(2+) pumping activity within the muscle explains, in part, the mild course of disease in our patient. Diagnosis of MHS in this family was secondary to a loss of SERCA1 due to disease-associated mutations. Although there are obvious differences in clinical expression and molecular mechanisms between MH and Brody myopathy, a feature common to both conditions is elevated myoplasmic Ca(2+) content. Prolonged intracellular Ca(2+) elevation is likely to have led to MHS diagnosis in vitro and postoperative MH-like symptoms in Brody patient.

4.
J Mol Biol ; 425(21): 4034-46, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23978697

RESUMO

Ryanodine receptors (RyRs) are large tetrameric calcium (Ca(2+)) release channels found on the sarcoplasmic reticulum that respond to dihydropyridine receptor activity through a direct conformational interaction and/or indirect Ca(2+) sensitivity, propagating sarcoplasmic reticulum luminal Ca(2+) release in the process of excitation-contraction coupling. There are three human RyR subtypes, and several debilitating diseases are linked to heritable mutations in RyR1 and RyR2 including malignant hypothermia, central core disease, catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia type 2 (ARVD2). Despite the recent appreciation that many disease-associated mutations within the N-terminal RyRABC domains (i.e., residues 1-559) are located in the putative interfaces mediating tetrameric channel assembly, the precise structural and dynamical consequences of the mutations are not well understood. We used solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography to examine the effect of ARVD2-associated (i.e., R176Q) and CPVT-associated [i.e., P164S, R169Q and delta exon 3 (Δ3)] mutations on the structure and dynamics of RyR2A. Our solution NMR data exposed a mobile α-helix, unique to type 2; further, this α2 helix rescues the ß-strand lost in RyR2A Δ3 but remains dynamic in the hot-spot loop (HS-loop) P164S, R169Q and R176Q mutant proteins. Docking of our X-ray crystal/NMR hybrid structure into the RyR1 cryo-electron microscopy map revealed that this RyR2A α2 helix is in close proximity to dense "columns" projecting toward the channel pore. This is in contrast to the HS-loop mutations that cause structural changes largely localized to the intersubunit interface between adjacent ABC domains. Taken together, our data suggest that ARVD2 and CPVT mutations have at least two distinct structural consequences linked to channel dysfunction: perturbation of the HS-loop (i.e., domain A):domain B intersubunit interface and disruption of the communication between the N-terminal region and the channel domain.


Assuntos
Cardiomiopatias/genética , Éxons , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sequência de Aminoácidos , Animais , Camundongos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência/métodos
5.
Anesthesiology ; 118(2): 344-9, 2013 02.
Artigo em Inglês | MEDLINE | ID: mdl-23460944

RESUMO

BACKGROUND: Malignant hyperthermia (MH, MIM# 145600) is a complex pharmacogenetic disorder that is manifested in predisposed individuals as a potentially lethal reaction to volatile anesthetics and depolarizing muscle relaxants. Studies of CASQ1-null mice have shown that CASQ1, encoding calsequestrin 1, the major Ca2+ binding protein in the lumen of the sarcoplasmic reticulum, is a candidate gene for MH in mice. The aim of this study was to establish whether the CASQ1 gene is associated with MH in the North American population. METHODS: The entire coding region of CASQ1 in 75 unrelated patients diagnosed by caffeine-halothane contracture test as MH susceptible (MHS) was analyzed by DNA sequencing. Subsequently, three groups of unrelated individuals (130 MHS, 100 MH negative, and 192 normal controls) were genotyped for a variant that was identified by sequencing. Levels of CASQ1 expression in the muscle from unrelated MHS and MH negative individuals were estimated by Western blotting. RESULTS: Screening of the entire coding sequence of the CASQ1 gene in 75 MHS patients revealed a single variant c.260T > C (p.Met87Thr) in exon 1. This variant is unlikely to be pathogenic, because its allele frequency in the MHS group was not significantly different from that of controls. There was also no difference in calsequestrin 1 protein levels between muscle samples from MHS and controls, including those carrying the p.Met87Thr variant. CONCLUSIONS: This study revealed a low level of protein coding sequence variability within the human CASQ1 gene, indicating that CASQ1 is not a major MHS locus in the North American population.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Hipertermia Maligna/epidemiologia , Hipertermia Maligna/genética , Proteínas Mitocondriais/genética , Sequência de Aminoácidos , Western Blotting , Canais de Cálcio/genética , Canais de Cálcio Tipo L , Calsequestrina , Biologia Computacional , DNA/genética , Éxons/genética , Humanos , Íntrons/genética , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , América do Norte/epidemiologia , RNA/genética , Estudos Retrospectivos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , População Branca
6.
FEBS J ; 279(20): 3952-64, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22913516

RESUMO

The ryanodine receptor (RyR) is a large, homotetrameric sarcoplasmic reticulum membrane protein that is essential for Ca(2+) cycling in both skeletal and cardiac muscle. Genetic mutations in RyR1 are associated with severe conditions including malignant hyperthermia (MH) and central core disease. One phosphorylation site (Ser 2843) has been identified in a segment of RyR1 flanked by two RyR motifs, which are found exclusively in all RyR isoforms as closely associated tandem (or paired) motifs, and are named after the protein itself. These motifs also contain six known MH mutations. In this study, we designed, expressed and purified the tandem RyR motifs, and show that this domain contains a putative binding site for the Ca(2+)/calmodulin-dependent protein kinase ß isoform. We present a 2.2 Å resolution crystal structure of the RyR domain revealing a two-fold, symmetric, extended four-helix bundle stabilized by a ß sheet. Using mathematical modelling, we fit our crystal structure within a tetrameric electron microscopy (EM) structure of native RyR1, and propose that this domain is localized in the RyR clamp region, which is absent in its cousin protein inositol 1,4,5-trisphosphate receptor.


Assuntos
Estrutura Terciária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Western Blotting , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Homologia de Sequência de Aminoácidos
7.
Can J Anaesth ; 58(6): 504-13, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21455645

RESUMO

PURPOSE: Malignant hyperthermia (MH) is an autosomal dominant pharmacogenetic disorder that is manifested on exposure of susceptible individuals to halogenated anesthetics or succinylcholine. Since MH is associated primarily with mutations in the ryanodine receptor type 1 (RYR1) gene, the purpose of this study was to determine the distribution and frequency of MH causative RyR1 mutations in the Canadian MH susceptible (MHS) population. METHODS: In this study, we screened a representative cohort of 36 unrelated Canadian MHS individuals for RYR1 mutations by sequencing complete RYR1 transcripts and selected regions of CACNA1S transcripts. We then analyzed the correlation between caffeine-halothane contracture test (CHCT) results and RYR1 genotypes within MH families. RESULTS: Eighty-six percent of patients had at least one RyR1 mutation (31 out of 36), five of which were unrelated individuals who were double-variant carriers. Fifteen of the 27 mutations identified in RYR1 were novel. Eight novel mutations, involving highly conserved amino acid residues, were predicted to be causal. Two of the mutations co-segregated with the MHS phenotype within two large independent families (a total of 79 individuals). Fourteen percent of MHS individuals (five out of 36) carried neither RYR1 nor known CACNA1S mutations. CONCLUSIONS: The distribution and frequency of MH causative RyR1 mutations in the Canadian MHS population are close to those of European MHS populations. Novel mutations described in this study will contribute to the worldwide pool of MH-associated mutations in the RYR1 gene, ultimately increasing the value of MH genetic diagnostic testing.


Assuntos
Hipertermia Maligna/genética , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sequência de Aminoácidos , Estudos de Associação Genética , Humanos , Dados de Sequência Molecular , Polimorfismo Genético
8.
Biochim Biophys Acta ; 1813(5): 948-64, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21118704

RESUMO

This review focuses on muscle disorders and diseases caused by defects in the Ca(2+) release channels of the sarcoplasmic reticulum, the ryanodine receptors, and in the luminal, low affinity, high capacity Ca(2+)-binding proteins, calsequestrins. It provides a time line over the past half century of the highlights of research on malignant hyperthermia (MH), central core disease (CCD) and catecholaminergic polymorphic ventricular tachycardia (CPVT), that resulted in the identification of the ryanodine receptor (RYR), calsequestrin (CASQ) and dihydropyridine receptor (CACNA1S) genes as sites of disease-causing mutations. This is followed by a description of approaches to functional analysis of the effects of disease-causing mutations on protein function, focusing on studies of how mutations affect spontaneous (store overload-induced) Ca(2+)-release from the sarcoplasmic reticulum, the underlying cause of MH and CPVT. Subsequent sections describe results obtained by analysis of knockin mouse lines carrying MH- and CCD-causing mutations, including a Casq1 knockout. The review concludes with the presentation of two mechanistic models. The first shows how dysregulation of Ca(2+) homeostasis can lead to muscle diseases involving both RyR and Casq proteins. The second describes a theory of central core formation wherein non-uniformity of Ca(2+) release, resulting in non-uniformity of muscle contraction, is presented as an intrinsic property of the specific tertiary structure of mutant heterotetrameric ryanodine receptors and as the underlying cause of core formation in skeletal muscle. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Assuntos
Modelos Biológicos , Doenças Musculares/patologia , Retículo Sarcoplasmático/patologia , Animais , Sinalização do Cálcio/genética , Humanos , Doenças Musculares/genética , Mutação/genética , Penetrância , Retículo Sarcoplasmático/genética
9.
J Gen Physiol ; 137(1): 43-57, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21149547

RESUMO

The type 1 isoform of the ryanodine receptor (RYR1) is the Ca(2+) release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation-contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1(I4898T) mutation is one of the most common CCD mutations. To elucidate the mechanism by which RYR1 function is altered by this mutation, we characterized in vivo muscle strength, EC coupling, SR Ca(2+) content, and RYR1 Ca(2+) release channel function using adult heterozygous Ryr1(I4895T/+) knock-in mice (IT/+). Compared with age-matched wild-type (WT) mice, IT/+ mice exhibited significantly reduced upper body and grip strength. In spite of normal total SR Ca(2+) content, both electrically evoked and 4-chloro-m-cresol-induced Ca(2+) release were significantly reduced and slowed in single intact flexor digitorum brevis fibers isolated from 4-6-mo-old IT/+ mice. The sensitivity of the SR Ca(2+) release mechanism to activation was not enhanced in fibers of IT/+ mice. Single-channel measurements of purified recombinant channels incorporated in planar lipid bilayers revealed that Ca(2+) permeation was abolished for homotetrameric IT channels and significantly reduced for heterotetrameric WT:IT channels. Collectively, these findings indicate that in vivo muscle weakness observed in IT/+ knock-in mice arises from a reduction in the magnitude and rate of RYR1 Ca(2+) release during EC coupling that results from the mutation producing a dominant-negative suppression of RYR1 channel Ca(2+) ion permeation.


Assuntos
Cálcio/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio/genética , Cresóis/metabolismo , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Contração Muscular/genética , Contração Muscular/fisiologia , Força Muscular/genética , Força Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/genética
11.
Proc Natl Acad Sci U S A ; 106(27): 11040-4, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19541610

RESUMO

Muscle contraction and relaxation is regulated by transient elevations of myoplasmic Ca(2+). Ca(2+) is released from stores in the lumen of the sarco(endo)plasmic reticulum (SER) to initiate formation of the Ca(2+) transient by activation of a class of Ca(2+) release channels referred to as ryanodine receptors (RyRs) and is pumped back into the SER lumen by Ca(2+)-ATPases (SERCAs) to terminate the Ca(2+) transient. Mutations in the type 1 ryanodine receptor gene, RYR1, are associated with 2 skeletal muscle disorders, malignant hyperthermia (MH), and central core disease (CCD). The evaluation of proposed mechanisms by which RyR1 mutations cause MH and CCD is hindered by the lack of high-resolution structural information. Here, we report the crystal structure of the N-terminal 210 residues of RyR1 (RyR(NTD)) at 2.5 A. The RyR(NTD) structure is similar to that of the suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor (IP(3)Rsup), but lacks most of the long helix-turn-helix segment of the "arm" domain in IP(3)Rsup. The N-terminal beta-trefoil fold, found in both RyR and IP(3)R, is likely to play a critical role in regulatory mechanisms in this channel family. A disease-associated mutation "hot spot" loop was identified between strands 8 and 9 in a highly basic region of RyR1. Biophysical studies showed that 3 MH-associated mutations (C36R, R164C, and R178C) do not adversely affect the global stability or fold of RyR(NTD), supporting previously described mechanisms whereby mutations perturb protein-protein interactions.


Assuntos
Doença/genética , Mutação/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Sequência de Aminoácidos , Animais , Displasia Arritmogênica Ventricular Direita/genética , Cristalografia por Raios X , Receptores de Inositol 1,4,5-Trifosfato/química , Hipertermia Maligna/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Miopatia da Parte Central/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Soluções
12.
Proc Natl Acad Sci U S A ; 103(15): 6043-8, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16595628

RESUMO

Thyroid hormone (TH) is critical for cardiac development and heart function. In heart disease, TH metabolism is abnormal, and many biochemical and functional alterations mirror hypothyroidism. Although TH therapy has been advocated for treating heart disease, a clear benefit of TH has yet to be established, possibly because of peripheral actions of TH. To assess the potential efficacy of TH in treating heart disease, type 2 deiodinase (D2), which converts the prohormone thyroxine to active triiodothyronine (T3), was expressed transiently in mouse hearts by using the tetracycline transactivator system. Increased cardiac D2 activity led to elevated cardiac T3 levels and to enhanced myocardial contractility, accompanied by increased Ca(2+) transients and sarcoplasmic reticulum (SR) Ca(2+) uptake. These phenotypic changes were associated with up-regulation of sarco(endo)plasmic reticulum calcium ATPase (SERCA) 2a expression as well as decreased Na(+)/Ca(2+) exchanger, beta-myosin heavy chain, and sarcolipin (SLN) expression. In pressure overload, targeted increases in D2 activity could not block hypertrophy but could completely prevent impaired contractility and SR Ca(2+) cycling as well as altered expression patterns of SERCA2a, SLN, and other markers of pathological hypertrophy. Our results establish that elevated D2 activity in the heart increases T3 levels and enhances cardiac contractile function while preventing deterioration of cardiac function and altered gene expression after pressure overload.


Assuntos
Cardiopatias/fisiopatologia , Coração/fisiologia , Iodeto Peroxidase/genética , Contração Miocárdica/fisiologia , Tiroxina/fisiologia , Tri-Iodotironina/fisiologia , Animais , Pressão Sanguínea/fisiologia , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Regulação Enzimológica da Expressão Gênica , Genótipo , Homeostase , Iodeto Peroxidase/metabolismo , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Iodotironina Desiodinase Tipo II
13.
Proc Natl Acad Sci U S A ; 103(7): 2446-51, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16461894

RESUMO

Sarcolipin (SLN) inhibits the cardiac sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) by direct binding and is superinhibitory if it binds as a binary complex with phospholamban (PLN). To demonstrate whether overexpression of SLN in the heart might impair cardiac function directly, transgenic (TG) mice with cardiac-specific overexpression of NF-SLN (SLN tagged at its N terminus with the FLAG epitope) were generated on a phospholamban (PLN) null (PLN KO) background. In NF-SLN TG/PLN KO cardiac microsomes, the apparent affinity of SERCA2a for Ca2+ was decreased compared with non-TG littermate PLN KO hearts. Analyses of isolated NF-SLN/PLN KO cardiomyocytes revealed impaired cardiac contractility, reduced calcium transient peak amplitude, and slower decay kinetics compared to PLN KO animals. In these cardiomyocytes, isoproterenol restored calcium dynamics to the levels seen in PLN KO. Invasive hemodynamic and echocardiographic analyses of NF-SLN/PLN KO mouse cardiac muscle in vivo showed no direct effects of NF-SLN overexpression when compared to PLN KO mice. A possible mechanism for the lack of effects in the whole heart may be a responsiveness to phosphorylation because we determined that NF-SLN can be phosphorylated in cardiomyocytes in response to isoproterenol, and we provide evidence that serine/threonine kinase 16 is a kinase that can phosphorylate NF-SLN. Site-directed mutagenesis showed that SLN Thr-5 is the target site for this kinase. These data show that overexpression of NF-SLN can inhibit SERCA2a in the absence of PLN and that the inhibition of SERCA2a is correlated with impairment of contractility and calcium cycling in cardiomyocytes.


Assuntos
ATPases Transportadoras de Cálcio/antagonistas & inibidores , Proteínas Musculares/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Proteolipídeos/metabolismo , Animais , Cálcio/análise , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cardiotônicos/farmacologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Isoproterenol/farmacologia , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Mutação , Contração Miocárdica/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação , Fosfotransferases/análise , Fosfotransferases/metabolismo , Proteolipídeos/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Ativação Transcricional , Função Ventricular
14.
Hum Mutat ; 26(5): 413-25, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16163667

RESUMO

Malignant hyperthermia susceptibility (MHS) is a subclinical pharmacogenetic disorder caused by an impairment of skeletal muscle calcium homeostasis in response to triggering agents. While in vitro contracture testing (IVCT) is the gold standard for defining MHS, molecular analysis is increasingly used to diagnosis MHS. Mutations associated with MHS have been reported in two genes: RYR1 and CACNA1S. Mutations in RYR1 are also responsible for central core disease (CCD), a myopathy that can be associated with a positive IVCT response. We report here the results of correlation studies performed with molecular, pharmacological, histological, and functional data obtained in 175 families (referred to as confirmed (129) or potential (46) MHS families). Extensive molecular analysis allowed us to identify a variant in 60% of the confirmed MHS families, and resulted in the characterization of 11 new variants in the RYR1 gene. Most mutations clustered to MH1 and MH2 domains of RYR1. Functional analysis allowed us to assign a causative role for seven MHS mutations that we propose to add to the panel of MHS mutations used for genetic testing. The use of genetic data to determine MHS status led to a 99.5% sensitivity for IVCT. IVCT-positive/mutation-negative diagnoses were analyzed not only in terms of specificity for IVCT, but also to assess the presence of a second MHS trait in families, and the genetic heterogeneity of the disease. Histological analyses revealed the presence of cores in more than 20% of muscle biopsies originating from 242 genotyped and tested MHS patients who did not present with clinical symptoms. This indicates that these patients must be considered as MHS patients with cores, and are clearly differentiated from CCD patients who have been tested positive for MHS.


Assuntos
Predisposição Genética para Doença , Hipertermia Maligna/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio Tipo L , Linhagem Celular , Mapeamento Cromossômico , Análise Mutacional de DNA , Feminino , Testes Genéticos , Genótipo , Haplótipos , Humanos , Masculino , Hipertermia Maligna/diagnóstico , Hipertermia Maligna/patologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Linhagem , Estrutura Terciária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
15.
J Biol Chem ; 280(15): 15380-9, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15689621

RESUMO

Malignant hyperthermia (MH) and central core disease (CCD) are caused by mutations in the RYR1 gene encoding the skeletal muscle isoform of the ryanodine receptor (RyR1), a homotetrameric Ca(2+) release channel. Rabbit RyR1 mutant cDNAs carrying mutations corresponding to those in human RyR1 that cause MH and CCD were expressed in HEK-293 cells, which do not have endogenous RyR, and in primary cultures of rat skeletal muscle, which express rat RyR1. Analysis of intracellular Ca(2+) pools was performed using aequorin probes targeted to the lumen of the endo/sarcoplasmic reticulum (ER/SR), to the mitochondrial matrix, or to the cytosol. Mutations associated with MH caused alterations in intracellular Ca(2+) homeostasis different from those associated with CCD. Measurements of luminal ER/SR Ca(2+) revealed that the mutations generated leaky channels in all cases, but the leak was particularly pronounced in CCD mutants. Cytosolic and mitochondrial Ca(2+) transients induced by caffeine stimulation were drastically augmented in the MH mutant, slightly reduced in one CCD mutant (Y523S) and completely abolished in another (I4898T). The results suggest that local Ca(2+) derangements of different degrees account for the specific cellular phenotypes of the two disorders.


Assuntos
Cálcio/metabolismo , Hipertermia Maligna/genética , Miopatias da Nemalina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Equorina/farmacologia , Animais , Animais Recém-Nascidos , Western Blotting , Cafeína/farmacologia , Linhagem Celular , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Fenótipo , Ratos , Retículo Sarcoplasmático/metabolismo , Transfecção
16.
Proc Natl Acad Sci U S A ; 101(48): 16807-12, 2004 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-15556994

RESUMO

Sarcolipin (SLN) and phospholamban (PLN) are effective inhibitors of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). These homologous proteins differ at their N and C termini: the C-terminal Met-Leu-Leu in PLN is replaced by Arg-Ser-Tyr-Gln-Tyr in SLN. The role of the C-terminal sequence of SLN tagged N-terminally with the FLAG epitope (NF-SLN) in endoplasmic reticulum (ER) retention was investigated by transfecting human embryonic kidney-293 cells with cDNAs encoding NF-SLN or a series of NF-SLN mutants in which C-terminal amino acids were deleted progressively. Immunofluorescence and immunoblotting of transfected cells by using anti-FLAG antibodies indicated that NF-SLN and PLN tagged at its N terminus with the FLAG epitope, even when overexpressed, were restricted to the ER. However, C-terminal truncation deletions of SLN, which lacked RSYQY, were not localized to ER and did not inhibit Ca(2+)-dependent Ca2+ uptake by SERCA. The shortest deletion constructs, NF-SLN 1-22 and NF-SLN 1-23, did not express stable protein products. However, all NF-SLN cDNA constructs, including NF-SLN 1-22 and NF-SLN 1-23, were expressed stably and localized to the ER when they were coexpressed with SERCA2a. These results show that NF-SLN subcellular distribution depends on SERCA coexpression and on its luminal, C-terminal RSYQY sequence. By using immunoprecipitation and MS, glucose-regulated protein 78/BiP and glucose-regulated protein 94 were identified as proteins that interact with NF-SLN through the RSYQY sequence. Thus, in the absence of SERCA, retention of NF-SLN in the ER is mediated through its association with other components through the C-terminal RSYQY sequence.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , Sequência de Aminoácidos , Animais , Camundongos , Dados de Sequência Molecular , Proteínas Musculares/química , Ligação Proteica , Proteolipídeos/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Homologia de Sequência de Aminoácidos
17.
J Biol Chem ; 279(50): 52382-9, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15371420

RESUMO

This study examined whether HSP70 could bind to and protect against thermal inactivation of SERCA1a, the SERCA isoform expressed in adult fast-twitch skeletal muscle. Sarcoplasmic reticulum vesicles prepared from rat gastrocnemius muscle were incubated with purified HSP70 at both 37 and 41 degrees C for either 30, 60, or 120 min. Maximal SERCA1a activity (micromol/g protein/min) in the absence of HSP70 was reduced progressively with time, with greater reductions occurring at 41 degrees C compared with 37 degrees C. HSP70 protected against thermal inactivation of SERCA1a activity at 37 degrees C but not at 41 degrees C and only at 30 and 60 min but not at 120 min. HSP70 also protected against reductions in binding capacity for fluorescein isothiocyanate, a fluorescent probe that binds to Lys515 in the nucleotide binding domain of SERCA, at 30 and 60 min but not at 120 min, an effect that was independent of temperature. HEK-293 cells were co-transfected with cDNAs encoding rabbit SERCA1a and human HSP-EYFP and subjected to 40 degrees C for 1 h. Immunohistochemistry revealed nearly complete co-localization of SERCA1a with HSP70 under these conditions. Co-immunoprecipitation showed physical interaction between HSP70 and SERCA1a under all thermal conditions both in vitro and in HEK-293 cells. Modeling showed that the fluorescein isothiocyanate-binding site of intact SERCA1a in the E2 form lies in its close proximity to a potential interaction site between SERCA1a and HSP70. These results indicate that HSP70 can bind to SERCA1a and, depending on the severity of heat stress, protect SERCA1a function by stabilizing the nucleotide binding domain.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Fibras Musculares de Contração Rápida/enzimologia , Animais , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/genética , Linhagem Celular , Feminino , Proteínas de Choque Térmico HSP70/genética , Temperatura Alta , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Complexos Multiproteicos , Ligação Proteica , Coelhos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Termodinâmica , Transfecção
18.
Biochem J ; 382(Pt 2): 557-64, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15175001

RESUMO

Three CCD (central core disease) mutants, R4892W (Arg4892-->), I4897T and G4898E, in the pore region of the skeletal-muscle Ca2+-release channel RyR1 (ryanodine receptor 1) were characterized using a newly developed assay that monitored Ca2+ release in the presence of Ca2+ uptake in microsomes isolated from HEK-293 cells (human embryonic kidney 293 cells), co-expressing each of the three mutants together with SERCA1a (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase 1a). Both Ca2+ sensitivity and peak amplitude of Ca2+ release were either absent from or sharply decreased in homotetrameric mutants. Co-expression of wild-type RyR1 with mutant RyR1 (heterotetrameric mutants) restored Ca2+ sensitivity partially, in the ratio 1:2, or fully, in the ratio 1:1. Peak amplitude was restored only partially in the ratio 1:2 or 1:1. Reduced amplitude was not correlated with maximum Ca2+ loading or the amount of expressed RyR1 protein. High-affinity [3H]ryanodine binding and caffeine-induced Ca2+ release were also absent from the three homotetrameric mutants. These results indicate that decreased Ca2+ sensitivity is one of the serious defects in these three excitation-contraction uncoupling CCD mutations. In CCD skeletal muscles, where a mixture of wild-type and mutant RyR1 is expressed, these defects are expected to decrease Ca2+-induced Ca2+ release, as well as orthograde Ca2+ release, in response to transverse tubular membrane depolarization.


Assuntos
Mutação de Sentido Incorreto/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Trifosfato de Adenosina/metabolismo , Arginina/genética , Cálcio/química , Cálcio/metabolismo , Isótopos de Cálcio/metabolismo , ATPases Transportadoras de Cálcio/biossíntese , Linhagem Celular , Ácido Glutâmico/genética , Glicina/genética , Humanos , Isoleucina/metabolismo , Rim/química , Rim/citologia , Rim/embriologia , Rim/metabolismo , Microssomos/química , Microssomos/metabolismo , Mutagênese Sítio-Dirigida , Oxalatos/metabolismo , Fotometria/métodos , Isoformas de Proteínas/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Treonina/genética , Triptofano/genética
19.
Proc Natl Acad Sci U S A ; 101(25): 9199-204, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15201433

RESUMO

Sarcolipin (SLN) inhibits the cardiac sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA2a) by direct binding and is superinhibitory if it binds through phospholamban (PLN). To determine whether overexpression of SLN in the heart might impair cardiac function, transgenic (TG) mice were generated with cardiac-specific overexpression of NF-SLN (SLN tagged at its N terminus with the FLAG epitope). The level of NF-SLN expression (the NF-SLN/PLN expression ratio) was equivalent to that which induces profound superinhibition when coexpressed with PLN and SERCA2a in HEK-293 cells. In TG hearts, the apparent affinity of SERCA2a for Ca(2+) was decreased compared with non-TG littermate control hearts. Invasive hemodynamic and echocardiographic analyses revealed impaired cardiac contractility and ventricular hypertrophy in TG mice. Basal PLN phosphorylation was reduced. In isolated papillary muscle subjected to isometric tension, peak amplitudes of Ca(2+) transients and peak tensions were reduced, whereas decay times of Ca(2+) transients and relaxation times of tension were increased in TG mice. Isoproterenol largely restored contractility in papillary muscle and stimulated PLN phosphorylation to wild-type levels in intact hearts. No compensatory changes in expression of SERCA2a, PLN, ryanodine receptor, and calsequestrin were observed in TG hearts. Coimmunoprecipitation indicated that overexpressed NF-SLN was bound to both SERCA2a and PLN, forming a ternary complex. These data suggest that NF-SLN overexpression inhibits SERCA2a through stabilization of SERCA2a-PLN interaction in the absence of PLN phosphorylation and through the inhibition of PLN phosphorylation. Inhibition of SERCA2a impairs contractility and calcium cycling, but responsiveness to beta-adrenergic agonists may prevent progression to heart failure.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Coração/fisiologia , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Proteolipídeos/metabolismo , Animais , Cálcio/fisiologia , ATPases Transportadoras de Cálcio/genética , Linhagem Celular , Ecocardiografia , Retículo Endoplasmático/enzimologia , Hemodinâmica/genética , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Contração Miocárdica , Miocárdio/enzimologia , Proteolipídeos/genética , Coelhos , Proteínas Recombinantes/metabolismo , Retículo Sarcoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Transfecção
20.
J Biol Chem ; 279(31): 32515-23, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15133025

RESUMO

Residues in conserved motifs (625)TGD, (676)FARXXPXXK, and (701)TGDGVND in domain P of sarcoplasmic reticulum Ca(2+)-ATPase, as well as in motifs (601)DPPR and (359)NQR(/K)MSV in the hinge segments connecting domains N and P, were examined by mutagenesis to assess their roles in nucleotide and Mg(2+) binding and stabilization of the Ca(2+)-activated transition state for phosphoryl transfer. In the absence of Mg(2+), mutations removing the charges of domain P residues Asp(627), Lys(684), Asp(703), and Asp(707) increased the affinity for ATP and 2',3'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine 5'-triphosphate. These mutations, as well as Gly(626)--> Ala, were inhibitory for ATP binding in the presence of Mg(2+) and for tight binding of the beta,gamma-bidentate chromium(III) complex of ATP. The hinge mutations had pronounced, but variable, effects on ATP binding only in the presence of Mg(2+). The data demonstrate an unfavorable electrostatic environment for binding of negatively charged nucleotide in domain P and show that Mg(2+) is required to anchor the phosphoryl group of ATP at the phosphorylation site. Mutants Gly(626) --> Ala, Lys(684) --> Met, Asp(703) --> Ala/Ser/Cys, and mutants with alteration to Asp(707) exhibited very slow or negligible phosphorylation, making it possible to measure ATP binding in the pseudo-transition state attained in the presence of both Mg(2+) and Ca(2+). Under these conditions, ATP binding was almost completely blocked in Gly(626) --> Ala and occurred with 12- and 7-fold reduced affinities in Asp(703) --> Ala and Asp(707) --> Cys, respectively, relative to the situation in the presence of Mg(2+) without Ca(2+), whereas in Lys(684) --> Met and Asp(707) --> Ser/Asn the affinity was enhanced 14- and 3-5-fold, respectively. Hence, Gly(626) and Asp(703) seem particularly critical for mediating entry into the transition state for phosphoryl transfer upon Ca(2+) binding at the transport sites.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Magnésio/química , Retículo Sarcoplasmático/metabolismo , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Animais , Ácido Aspártico/química , Transporte Biológico , Células COS , Cálcio/química , Catálise , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Glicina/química , Cinética , Modelos Moleculares , Mutagênese , Mutação , Nucleotídeos/química , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA