Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Front Pharmacol ; 15: 1426446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070793

RESUMO

Introduction: Preclinical studies suggest that cannabinoid receptor type 2 (CB2R) activation has a therapeutic effect in animal models on chronic inflammation and vascular permeability, which are key pathological features of diabetic retinopathy (DR). A novel CB2R agonist, triazolopyrimidine RG7774, was generated through lead optimization of a high-throughput screening hit. The aim of this study was to characterize the pharmacology, absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile of RG7774, and to explore its potential for managing the key pathological features associated with retinal disease in rodents. Methods: The in vitro pharmacology of RG7774 was investigated for CB2R binding and receptor activation using recombinant human and mouse CB2R expression in Chinese hamster ovary cells, and endogenous CB2R expression in human Jurkat cells, and rat and mouse spleen cells. The ADMET profile was evaluated and the effects of RG7774 on retinal permeability, leukocyte adhesion, and choroidal neovascularization (CNV) were investigated in rodent models of retinal disease. Pharmacokinetic (PK) parameters and the exposure-response relationship were characterized in healthy animals and in animals with laser-induced CNV. Results: RG7774 was found to be a potent (EC50: 2.8 nM and Ki: 51.3 nM), selective, and full CB2R agonist with no signs of cannabinoid receptor type 1 (CB1R) binding or activation. The ligand showed a favorable ADMET profile and exhibited systemic and ocular exposure after oral delivery. Functional potency in vitro translated from recombinant to endogenous expression systems. In vivo, orally administered RG7774 reduced retinal permeability and leukocyte adhesion in rodents with lipopolysaccharide (LPS)-induced uveitis and streptozotocin (STZ)-induced DR, and reduced lesion areas in rats with laser-induced CNV with an ED50 of 0.32 mg/kg. Anatomically, RG7774 reduced the migration of retinal microglia to retinal lesions. Discussion: RG7774 is a novel, highly selective, and orally bioavailable CB2R agonist, with an acceptable systemic and ocular PK profile, and beneficial effects on retinal vascular permeability, leukocyte adhesion, and ocular inflammation in rodent animal models. Results support the development of RG7774 as a potential treatment for retinal diseases with similar pathophysiologies as addressed by the animal models.

2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159524, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38857757

RESUMO

Neuroinflammation is a hallmark of several neurodegenerative disorders that has been extensively studied in recent years. Microglia, the primary immune cells of the central nervous system (CNS), are key players in this physiological process, demonstrating a remarkable adaptability in responding to various stimuli in the eye and the brain. Within the complex network of neuroinflammatory signals, the fatty acid N-ethanolamines, in particular N-arachidonylethanolamine (anandamide, AEA), emerged as crucial regulators of microglial activity under both physiological and pathological states. In this study, we interrogated for the first time the impact of the signaling of these bioactive lipids on microglial cell responses to a sub-lethal acute UVB radiation, a physical stressor responsible of microglia reactivity in either the retina or the brain. To this end, we developed an in vitro model using mouse microglial BV-2 cells. Upon 24 h of UVB exposure, BV-2 cells showed elevated oxidative stress markers and, cyclooxygenase (COX-2) expression, enhanced phagocytic and chemotactic activities, along with an altered immune profiling. Notably, UVB exposure led to a selective increase in expression and activity of fatty acid amide hydrolase (FAAH), the main enzyme responsible for degradation of fatty acid ethanolamides. Pharmacological FAAH inhibition via URB597 counteracted the effects of UVB exposure, decreasing tumor necrosis factor α (TNF-α) and nitric oxide (NO) release and reverting reactive oxidative species (ROS), interleukin-1ß (IL-1ß), and interleukin-10 (IL-10) levels to the control levels. Our findings support the potential of enhanced fatty acid amide signaling in mitigating UVB-induced cellular damage, paving the way to further exploration of these lipids in light-induced immune responses.


Assuntos
Amidoidrolases , Microglia , Raios Ultravioleta , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/efeitos da radiação , Animais , Camundongos , Amidoidrolases/metabolismo , Amidoidrolases/antagonistas & inibidores , Raios Ultravioleta/efeitos adversos , Linhagem Celular , Carbamatos/farmacologia , Benzamidas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Endocanabinoides/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Interleucina-10/metabolismo , Alcamidas Poli-Insaturadas
3.
FASEB J ; 38(10): e23675, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38801406

RESUMO

Resolution of inflammation is the cellular and molecular process that protects from widespread and uncontrolled inflammation and restores tissue function in the aftermath of acute immune events. This process is orchestrated by specialized pro-resolving mediators (SPM), a class of bioactive lipids able to reduce immune activation and promote removal of tissue debris and apoptotic cells by macrophages. Although SPMs are the lipid class that has been best studied for its role in facilitating the resolution of self-limited inflammation, a number of other lipid signals, including endocannabinoids, also exert protective immunomodulatory effects on immune cells, including macrophages. These observations suggest that endocannabinoids may also display pro-resolving actions. Interestingly, the endocannabinoid anandamide (AEA) is not only known to bind canonical type 1 and type 2 cannabinoid receptors (CB1 and CB2) but also to engage SPM-binding receptors such as GPR18. This suggests that AEA may also contribute to the governing of resolution processes. In order to interrogate this hypothesis, we investigated the ability of AEA to induce pro-resolving responses by classically-activated primary human monocyte-derived macrophages (MoDM). We found that AEA, at nanomolar concentration, enhances efferocytosis in MoDMs in a CB2- and GPR18-dependent manner. Using lipid mediator profiling, we also observed that AEA modulates SPM profiles in these cells, including levels of resolvin (Rv)D1, RvD6, maresin (MaR)2, and RvE1 in a CB2-dependent manner. AEA treatment also modulated the gene expression of SPM enzymes involved in both the formation and further metabolism of SPM such as 5-lipoxygenase and 15-Prostaglandin dehydrogenase. Our findings show, for the first time, a direct effect of AEA on the regulation of pro-resolving pathways in human macrophages. They also provide new insights into the complex interactions between different lipid pathways in activation of pro-resolving responses contributing to the reestablishment of homeostasis in the aftermath of acute inflammation.


Assuntos
Ácidos Araquidônicos , Endocanabinoides , Macrófagos , Alcamidas Poli-Insaturadas , Receptor CB2 de Canabinoide , Receptores Acoplados a Proteínas G , Humanos , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Inflamação/metabolismo , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo
4.
J Hepatol ; 80(1): 140-154, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37741346

RESUMO

Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.


Assuntos
Carcinoma Hepatocelular , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatias Alcoólicas/metabolismo , Carcinoma Hepatocelular/patologia , Fosfolipídeos/metabolismo , Neoplasias Hepáticas/patologia , Fígado/patologia
5.
Cell Chem Biol ; 30(12): 1499-1501, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134878

RESUMO

Resolution of inflammation is the physiological process whereby endogenous pro-resolving lipids constrain inflammatory stimuli that would otherwise cause chronic inflammation. In this issue of Cell Chemical Biology, Peltner et al.1 report that the cannabis component cannabidiol induces production of pro-resolving lipids directly activating 15-lipoxygenase and inhibiting 5-lipoxygenase in human macrophages.


Assuntos
Inflamação , Macrófagos , Humanos , Lipídeos , Homeostase
6.
Eur J Med Chem ; 259: 115647, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37478557

RESUMO

The discovery of selective agonists of cannabinoid receptor 2 (CB2) is strongly pursued to successfully tuning endocannabinoid signaling for therapeutic purposes. However, the design of selective CB2 agonists is still challenging because of the high homology with the cannabinoid receptor 1 (CB1) and for the yet unclear molecular basis of the agonist/antagonist switch. Here, the 1,3-benzoxazine scaffold is presented as a versatile chemotype for the design of CB2 agonists from which 25 derivatives were synthesized. Among these, compound 7b5 (CB2 EC50 = 110 nM, CB1 EC50 > 10 µM) demonstrated to impair proliferation of triple negative breast cancer BT549 cells and to attenuate the release of pro-inflammatory cytokines in a CB2-dependent manner. Furthermore, 7b5 abrogated the activation of extracellular signal-regulated kinase (ERK) 1/2, a key pro-inflammatory and oncogenic enzyme. Finally, molecular dynamics studies suggested a new rationale for the in vitro measured selectivity and for the observed agonist behavior.


Assuntos
Benzoxazinas , Neoplasias , Humanos , Benzoxazinas/farmacologia , Neoplasias/tratamento farmacológico , Transdução de Sinais , Simulação de Dinâmica Molecular , Receptores de Canabinoides , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide , Agonistas de Receptores de Canabinoides
7.
Cells ; 12(8)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190046

RESUMO

Oxidative stress, a key mediator of cardiovascular disease, metabolic alterations, and cancer, is independently associated with menopause and obesity. Yet, among postmenopausal women, the correlation between obesity and oxidative stress is poorly examined. Thus, in this study, we compared oxidative stress states in postmenopausal women with or without obesity. Body composition was assessed via DXA, while lipid peroxidation and total hydroperoxides were measured in patient's serum samples via thiobarbituric-acid-reactive substances (TBARS) and derivate-reactive oxygen metabolites (d-ROMs) assays, respectively. Accordingly, 31 postmenopausal women were enrolled: 12 with obesity and 19 of normal weight (mean (SD) age 71.0 (5.7) years). Doubled levels of serum markers of oxidative stress were observed in women with obesity in women with obesity compared to those of normal weight (H2O2: 32.35 (7.3) vs. 18.80 (3.4) mg H2O2/dL; malondialdehyde (MDA): 429.6 (138.1) vs. 155.9 (82.4) mM in women with or without obesity, respectively; p < 0.0001 for both). Correlation analysis showed that both markers of oxidative stress increased with an increasing body mass index (BMI), visceral fat mass, and trunk fat percentage, but not with fasting glucose levels. In conclusion, obesity and visceral fat are associated with a greater increase in oxidative stress in postmenopausal women, possibly increasing cardiometabolic and cancer risks.


Assuntos
Peróxido de Hidrogênio , Pós-Menopausa , Humanos , Feminino , Idoso , Obesidade/metabolismo , Estresse Oxidativo , Índice de Massa Corporal
8.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239854

RESUMO

Microglia, the resident immune cells of the central nervous system, play important roles in brain homeostasis as well as in neuroinflammation, neurodegeneration, neurovascular diseases, and traumatic brain injury. In this context, components of the endocannabinoid (eCB) system have been shown to shift microglia towards an anti-inflammatory activation state. Instead, much less is known about the functional role of the sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P) system in microglia biology. In the present study, we addressed potential crosstalk of the eCB and the S1P systems in BV2 mouse microglia cells challenged with lipopolysaccharide (LPS). We show that URB597, the selective inhibitor of fatty acid amide hydrolase (FAAH)-the main degradative enzyme of the eCB anandamide-prevented LPS-induced production of tumor necrosis factor-α (TNFα) and interleukin-1ß (IL-1ß), and caused the accumulation of anandamide itself and eCB-like molecules such as oleic acid and cis-vaccenic acid ethanolamide, palmitoylethanolamide, and docosahexaenoyl ethanolamide. Furthermore, treatment with JWH133, a selective agonist of the eCB-binding cannabinoid 2 (CB2) receptor, mimicked the anti-inflammatory effects of URB597. Interestingly, LPS induced transcription of both SphK1 and SphK2, and the selective inhibitors of SphK1 (SLP7111228) and SphK2 (SLM6031434) strongly reduced LPS-induced TNFα and IL-1ß production. Thus, the two SphKs were pro-inflammatory in BV2 cells in a non-redundant manner. Most importantly, the inhibition of FAAH by URB597, as well as the activation of CB2 by JWH133, prevented LPS-stimulated transcription of SphK1 and SphK2. These results present SphK1 and SphK2 at the intersection of pro-inflammatory LPS and anti-inflammatory eCB signaling, and suggest the further development of inhibitors of FAAH or SphKs for the treatment of neuroinflammatory diseases.


Assuntos
Endocanabinoides , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Endocanabinoides/farmacologia , Lipopolissacarídeos/farmacologia , Microglia , Esfingosina/farmacologia , Anti-Inflamatórios/farmacologia
9.
Front Immunol ; 14: 1148268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153620

RESUMO

Introduction: COVID-19 and autoinflammatory diseases, such as Adult-onset Still's Disease (AOSD), are characterized by hyperinflammation, in which it is observed massive production and uncontrolled secretion of pro-inflammatory cytokines. The specialized pro-resolving lipid mediators (SPMs) family is one the most important processes counteracting hyperinflammation inducing tissue repair and homeostasis restoration. Among SPMs, Protectin D1 (PD1) is able to exert antiviral features, at least in animal models. The aim of this study was to compare the transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with AOSD and COVID-19 and to evaluate the role of PD1 on those diseases, especially in modulating macrophages polarization. Methods: This study enrolled patients with AOSD, COVID-19, and healthy donors HDs, undergoing clinical assessment and blood sample collection. Next-generation deep sequencing was performed to identify differences in PBMCs transcripts profiles. Plasma levels of PD1 were assessed by commercial ELISA kits. Monocyte-derived macrophages were polarized into M1 and M2 phenotypes. We analyzed the effect of PD1 on macrophages differentiation. At 10 days, macrophages were analyzed for surface expression of subtypes markers by flow cytometry. Cytokines production was measured in supernatants by Bio-Plex Assays. Results: In the transcriptomes from AOSD patients and COVID-19 patients, genes involved in inflammation, lipid catabolism, and monocytes activation were specifically dysregulated in AOSD and COVID-19 patients when compared to HDs. Patients affected by COVID-19, hospitalized in intensive care unit (ICU), showed higher levels of PD1 when compared to not-ICU hospitalized patients and HDs (ICU COVID-19 vs not-ICU COVID-19, p= 0.02; HDs vs ICU COVID-19, p= 0.0006). PD1 levels were increased in AOSD patients with SS ≥1 compared to patients with SS=0 (p=0.028) and HDs (p=0.048). In vitro treatment with PD1 of monocytes-derived macrophages from AOSD and COVID-19 patients induced a significant increase of M2 polarization vs control (p<0.05). Furthermore, a significant release of IL-10 and MIP-1ß from M2 macrophages was observed when compared to controls (p<0.05). Discussion: PD1 is able to induce pro-resolutory programs in both AOSD and COVID-19 increasing M2 polarization and inducing their activity. In particular, PD1-treated M2 macrophages from AOSD and COVID-19 patients increased the production of IL-10 and enhanced homeostatic restoration through MIP-1ß production.


Assuntos
COVID-19 , Doença de Still de Início Tardio , Humanos , Transcriptoma , Interleucina-10/metabolismo , Leucócitos Mononucleares/metabolismo , Quimiocina CCL4/metabolismo , COVID-19/metabolismo , Citocinas/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Macrófagos , Diferenciação Celular/genética
10.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769042

RESUMO

Increasing evidence supports the therapeutic potential of rare cannabis-derived phytocannabinoids (pCBs) in skin disorders such as atopic dermatitis, psoriasis, pruritus, and acne. However, the molecular mechanisms of the biological action of these pCBs remain poorly investigated. In this study, an experimental model of inflamed human keratinocytes (HaCaT cells) was set up by using lipopolysaccharide (LPS) in order to investigate the anti-inflammatory effects of the rare pCBs cannabigerol (CBG), cannabichromene (CBC), Δ9-tetrahydrocannabivarin (THCV) and cannabigerolic acid (CBGA). To this aim, pro-inflammatory interleukins (IL)-1ß, IL-8, IL-12, IL-31, tumor necrosis factor (TNF-ß) and anti-inflammatory IL-10 levels were measured through ELISA quantification. In addition, IL-12 and IL-31 levels were measured after treatment of HaCaT cells with THCV and CBGA in the presence of selected modulators of endocannabinoid (eCB) signaling. In the latter cells, the activation of 17 distinct proteins along the mitogen-activated protein kinase (MAPK) pathway was also investigated via Human Phosphorylation Array. Our results demonstrate that rare pCBs significantly blocked inflammation by reducing the release of all pro-inflammatory ILs tested, except for TNF-ß. Moreover, the reduction of IL-31 expression by THCV and CBGA was significantly reverted by blocking the eCB-binding TRPV1 receptor and by inhibiting the eCB-hydrolase MAGL. Remarkably, THCV and CBGA modulated the expression of the phosphorylated forms (and hence of the activity) of the MAPK-related proteins GSK3ß, MEK1, MKK6 and CREB also by engaging eCB hydrolases MAGL and FAAH. Taken together, the ability of rare pCBs to exert an anti-inflammatory effect in human keratinocytes through modifications of eCB and MAPK signaling opens new perspectives for the treatment of inflammation-related skin pathologies.


Assuntos
Endocanabinoides , Proteínas Quinases Ativadas por Mitógeno , Humanos , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Linfotoxina-alfa/metabolismo , Transdução de Sinais , Queratinócitos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Inflamação/metabolismo , Interleucina-12/metabolismo
11.
Curr Med Chem ; 30(12): 1420-1457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36028971

RESUMO

In the last decade, selective modulators of type-2 cannabinoid receptor (CB2) have become a major focus to target endocannabinoid signaling in humans. Indeed, heterogeneously expressed within our body, CB2 actively regulates several physio-pathological processes, thus representing a promising target for developing specific and safe therapeutic drugs. If CB2 modulation has been extensively studied since the very beginning for the treatment of pain and inflammation, the more recent involvement of this receptor in other pathological conditions has further strengthened the pursuit of novel CB2 agonists in the last five years. Against this background, here we discuss the most recent evidence of the protective effects of CB2 against pathological conditions, emphasizing central nervous system disorders, bone and synovial diseases, and cancer. We also summarize the most recent advances in the development of CB2 agonists, focusing on the correlation between different chemical classes and diverse therapeutic applications. Data mining includes a review of the CB2 ligands disclosed in patents also released in the last five years. Finally, we discuss how the recent elucidation of CB2 tertiary structure has provided new details for the rational design of novel and more selective CB2 agonists, thus supporting innovative strategies to develop effective therapeutics. Our overview of the current knowledge on CB2 agonists provides pivotal information on the structure and function of different classes of molecules and opens possible avenues for future research.


Assuntos
Canabinoides , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Dor/tratamento farmacológico , Receptores de Canabinoides , Transdução de Sinais , Ligantes , Receptor CB2 de Canabinoide , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Receptor CB1 de Canabinoide
12.
Methods Mol Biol ; 2576: 133-143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152182

RESUMO

Dysregulation of peroxisome proliferator-activated receptor (PPAR)-γ has been described in a plethora of pathological conditions, such as diabetes, obesity, inflammatory-related diseases, and cancer. Therefore, identifying novel drugs that are able to restore PPAR-γ activity is a current challenge, which is however slowed down by the lack of a rapid and reproducible activity assay. To date, only a few methods are able to characterize PPAR-γ activity and most of them are expensive, time-consuming, and not always quantitative.Herein, we presented a sensitive multi-well colorimetric assay, termed DNA-Protein-Interaction enzyme-linked immunosorbent assay (DPI-ELISA). This method is based on the ELISA principle, except that it allows to detect only activated PPAR-γ because, unlike classical ELISA, PPAR-γ is not captured by an antibody but by a double-stranded oligonucleotide probe containing its peroxisome proliferator response elements (PPRE) consensus sequence. Thus, DPI-ELISA represents a useful assay for PPAR-γ studies, as well as for the identification of novel PPAR-γ ligands for the development of innovative therapeutic approaches to human diseases where PPAR-γ signaling is dysregulated.


Assuntos
PPAR gama , Tiazolidinedionas , DNA , Ensaio de Imunoadsorção Enzimática , Humanos , Sondas de Oligonucleotídeos , PPAR gama/metabolismo , Proliferadores de Peroxissomos
13.
Methods Mol Biol ; 2576: 299-305, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152197

RESUMO

The α,ß-hydrolase fold-containing protein 2 (ABHD2) is a serine hydrolase, responsible for the cleavage of endogenous 2-arachidonoylglycerol (2-AG). ABHD2 is activated by progesterone, thus, it is considered a nonnuclear receptor of this steroid hormone that terminates its biological effects. The products of ABHD2-catalyzed cleavage by the natural substrate 2-AG are glycerol and arachidonic acid; here, instead of 2-AG, the radioactive substrate 2-oleoyl-[3H]glycerol has been used as already done in various acylglycerol lipase activity assays. The amount of [3H]glycerol released allows to measure ABHD2 enzymatic activity.


Assuntos
Ácidos Araquidônicos , Glicerídeos , Ácido Araquidônico , Ácidos Araquidônicos/metabolismo , Endocanabinoides , Glicerídeos/metabolismo , Glicerol , Lipase/metabolismo , Progesterona , Serina
14.
ACS Chem Biol ; 17(5): 1174-1183, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35482948

RESUMO

Anandamide or N-arachidonoylethanolamine (AEA) is a signaling lipid that modulates neurotransmitter release via activation of the type 1 cannabinoid receptor (CB1R) in the brain. Termination of anandamide signaling is thought to be mediated via a facilitated cellular reuptake process that utilizes a purported transporter protein. Recently, WOBE437 has been reported as a novel, natural product-based inhibitor of AEA reuptake that is active in cellular and in vivo models. To profile its target interaction landscape, we synthesized pac-WOBE, a photoactivatable probe derivative of WOBE437, and performed chemical proteomics in mouse neuroblastoma Neuro-2a cells. Surprisingly WOBE437, unlike the widely used selective inhibitor of AEA uptake OMDM-1, was found to increase AEA uptake in Neuro-2a cells. In line with this, WOBE437 reduced the cellular levels of AEA and related N-acylethanolamines (NAEs). Using pac-WOBE, we identified saccharopine dehydrogenase-like oxidoreductase (SCCPDH), vesicle amine transport 1 (VAT1), and ferrochelatase (FECH) as WOBE437-interacting proteins in Neuro-2a cells. Further genetic studies indicated that SCCPDH and VAT1 were not responsible for the WOBE437-induced reduction in NAE levels. Regardless of the precise mechanism of action of WOB437 in AEA transport, we have identified SSCPHD, VAT1, and FECH as unprecedented off-targets of this molecule which should be taken into account when interpreting its cellular and in vivo effects.


Assuntos
Ácidos Araquidônicos , Proteômica , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Endocanabinoides , Camundongos , Alcamidas Poli-Insaturadas/farmacologia
15.
Cancers (Basel) ; 13(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34503268

RESUMO

Cannabinoids, active components of the plant Cannabis sativa, had been used for centuries in ancient medicine as therapeutic remedies for a variety of conditions, before becoming stigmatized due to their psychoactive effects [...].

16.
Biomolecules ; 11(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810505

RESUMO

Growing evidence shows that the immune system is critically involved in Alzheimer's disease (AD) pathogenesis and progression. The modulation and targeting of peripheral immune mechanisms are thus promising therapeutic or preventive strategies for AD. Given the critical involvement of the endocannabinoid (eCB) system in modulating immune functions, we investigated the potential role of the main elements of such a system, namely type-1 and type-2 cannabinoid receptors (CB1 and CB2), and fatty acid amide hydrolase (FAAH), in distinct immune cell populations of the peripheral blood of AD patients. We found that, compared to healthy controls, CB1 and CB2 expression was significantly lower in the B-lymphocytes of AD patients. Moreover, we found that CB2 was significantly lower and FAAH was significantly higher in monocytes of the same subjects. In contrast, T-lymphocytes and NK cells did not show any variation in any of these proteins. Of note, monocytic CB2 and FAAH levels significantly correlated with clinical scores. Furthermore, the pharmacological inactivation of FAAH in monocytes and monocyte-derived macrophages obtained from AD patients was able to modulate their immune responses, by reducing production of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-12, and enhancing that of the anti-inflammatory cytokine IL-10. Furthermore, FAAH blockade skewed AD monocyte-derived macrophages towards a more anti-inflammatory and pro-resolving phenotype. Collectively, our findings highlight a central role of FAAH in regulating AD monocytes/macrophages that could be of value in developing novel monocyte-centered therapeutic approaches aimed at promoting a neuroprotective environment.


Assuntos
Doença de Alzheimer/patologia , Amidoidrolases/metabolismo , Macrófagos/metabolismo , Idoso , Amidoidrolases/antagonistas & inibidores , Benzamidas/farmacologia , Carbamatos/farmacologia , Feminino , Humanos , Interleucina-6/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
ACS Chem Neurosci ; 12(9): 1716-1736, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890763

RESUMO

Temporal lobe epilepsy is the most common form of epilepsy, and current antiepileptic drugs are ineffective in many patients. The endocannabinoid system has been associated with an on-demand protective response to seizures. Blocking endocannabinoid catabolism would elicit antiepileptic effects, devoid of psychotropic effects. We herein report the discovery of selective anandamide catabolic enzyme fatty acid amide hydrolase (FAAH) inhibitors with promising antiepileptic efficacy, starting from a further investigation of our prototypical inhibitor 2a. When tested in two rodent models of epilepsy, 2a reduced the severity of the pilocarpine-induced status epilepticus and the elongation of the hippocampal maximal dentate activation. Notably, 2a did not affect hippocampal dentate gyrus long-term synaptic plasticity. These data prompted our further endeavor aiming at discovering new antiepileptic agents, developing a new set of FAAH inhibitors (3a-m). Biological studies highlighted 3h and 3m as the best performing analogues to be further investigated. In cell-based studies, using a neuroblastoma cell line, 3h and 3m could reduce the oxinflammation state by decreasing DNA-binding activity of NF-kB p65, devoid of cytotoxic effect. Unwanted cardiac effects were excluded for 3h (Langendorff perfused rat heart). Finally, the new analogue 3h reduced the severity of the pilocarpine-induced status epilepticus as observed for 2a.


Assuntos
Amidoidrolases , Anticonvulsivantes , Anticonvulsivantes/farmacologia , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Humanos , Convulsões
18.
Cancers (Basel) ; 13(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375539

RESUMO

Gynaecological cancers can be primary neoplasms, originating either from the reproductive tract or the products of conception, or secondary neoplasms, representative of metastatic disease. For some of these cancers, the exact causes are unknown; however, it is recognised that the precise aetiopathogeneses for most are multifactorial and include exogenous (such as diet) and endogenous factors (such as genetic predisposition), which mutually interact in a complex manner. One factor that has been recognised to be involved in the pathogenesis and progression of gynaecological cancers is the endocannabinoid system (ECS). The ECS consists of endocannabinoids (bioactive lipids), their receptors, and metabolic enzymes responsible for their synthesis and degradation. In this review, the impact of plant-derived (Cannabis species) cannabinoids and endocannabinoids on gynaecological cancers will be discussed within the context of the complexity of the proteins that bind, transport, and metabolise these compounds in reproductive and other tissues. In particular, the potential of endocannabinoids, their receptors, and metabolic enzymes as biomarkers of specific cancers, such as those of the endometrium, will be addressed. Additionally, the therapeutic potential of targeting selected elements of the ECS as new action points for the development of innovative drugs will be presented.

19.
J Bone Miner Res ; 35(12): 2415-2422, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32777114

RESUMO

Increased circulating sclerostin and accumulation of advanced glycation end-products (AGEs) are two potential mechanisms underlying low bone turnover and increased fracture risk in type 2 diabetes (T2D). Whether the expression of the sclerostin-encoding SOST gene is altered in T2D, and whether it is associated with AGEs accumulation or regulation of other bone formation-related genes is unknown. We hypothesized that AGEs accumulate and SOST gene expression is upregulated in bones from subjects with T2D, leading to downregulation of bone forming genes (RUNX2 and osteocalcin) and impaired bone microarchitecture and strength. We obtained bone tissue from femoral heads of 19 T2D postmenopausal women (mean glycated hemoglobin [HbA1c] 6.5%) and 73 age- and BMI-comparable nondiabetic women undergoing hip replacement surgery. Despite similar bone mineral density (BMD) and biomechanical properties, we found a significantly higher SOST (p = .006) and a parallel lower RUNX2 (p = .025) expression in T2D compared with non-diabetic subjects. Osteocalcin gene expression did not differ between T2D and non-diabetic subjects, as well as circulating osteocalcin and sclerostin levels. We found a 1.5-fold increase in total bone AGEs content in T2D compared with non-diabetic women (364.8 ± 78.2 versus 209.9 ± 34.4 µg quinine/g collagen, respectively; p < .001). AGEs bone content correlated with worse bone microarchitecture, including lower volumetric BMD (r = -0.633; p = .02), BV/TV (r = -0.59; p = .033) and increased trabecular separation/spacing (r = 0.624; p = .023). In conclusion, our data show that even in patients with good glycemic control, T2D affects the expression of genes controlling bone formation (SOST and RUNX2). We also found that accumulation of AGEs is associated with impaired bone microarchitecture. We provide novel insights that may help understand the mechanisms underlying bone fragility in T2D. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Idoso , Densidade Óssea , Osso e Ossos , Feminino , Hemoglobinas Glicadas , Humanos
20.
Adv Drug Deliv Rev ; 159: 133-169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32628989

RESUMO

Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.


Assuntos
Inflamação/metabolismo , Metabolismo dos Lipídeos , Animais , Doença Crônica , Humanos , Inflamação/terapia , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA