Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nutrients ; 16(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794712

RESUMO

Extra virgin olive oil (EVOO) is a symbol of the Mediterranean diet, constituting its primary source of fat. The beneficial effect of EVOO is strictly related to the presence of fatty acids and polyphenols, bioactive compounds endowed with nutraceutical properties. Among EVOO polyphenols, lignans possess a steroid-like chemical structure and are part of the phytoestrogen family, which is renowned for its health properties. The natural lignans (+)-pinoresinol and 1-acetoxypinoresinol (1-AP) are commonly present in olives and in EVOO. Although (+)-pinoresinol is found in different edible plants, such as flaxseed, beans, whole-grain cereals, sesame seeds, and certain vegetables and fruit, 1-AP was exclusively identified in olives in 2000. So far, the scientific literature has extensively covered different aspects of (+)-pinoresinol, including its isolation and nutraceutical properties. In contrast, less is known about the olive lignan 1-AP. Therefore, this review aimed to comprehensively evaluate the more important aspects of 1-AP, collecting all the literature from 2016 to the present, exploring its distribution in different cultivars, analytical isolation and purification, and nutraceutical properties.


Assuntos
Suplementos Nutricionais , Lignanas , Olea , Azeite de Oliva , Lignanas/análise , Olea/química , Humanos , Azeite de Oliva/química , Frutas/química , Furanos
2.
J Chem Inf Model ; 64(7): 2275-2289, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676238

RESUMO

The application of artificial intelligence and machine learning (ML) methods is becoming increasingly popular in computational toxicology and drug design; it is considered as a promising solution for assessing the safety profile of compounds, particularly in lead optimization and ADMET studies, and to meet the principles of the 3Rs, which calls for the replacement, reduction, and refinement of animal testing. In this context, we herein present the development of VenomPred 2.0 (http://www.mmvsl.it/wp/venompred2/), the new and improved version of our free of charge web tool for toxicological predictions, which now represents a powerful web-based platform for multifaceted and human-interpretable in silico toxicity profiling of chemicals. VenomPred 2.0 presents an extended set of toxicity endpoints (androgenicity, skin irritation, eye irritation, and acute oral toxicity, in addition to the already available carcinogenicity, mutagenicity, hepatotoxicity, and estrogenicity) that can be evaluated through an exhaustive consensus prediction strategy based on multiple ML models. Moreover, we also implemented a new utility based on the Shapley Additive exPlanations (SHAP) method that allows human interpretable toxicological profiling of small molecules, highlighting the features that strongly contribute to the toxicological predictions in order to derive structural toxicophores.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Animais , Humanos
3.
Nutrients ; 15(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686778

RESUMO

BACKGROUND: Agrifood waste products are often considered rich sources of bioactive compounds that can be conveniently recovered. Due to these peculiar characteristics, the study of these waste products is attracting great interest in nutraceutical research. Olive mill wastewaters (OMWWs) are generated by extra virgin olive oil (EVOO) production, and they pose environmental challenges due to their disposal. This study aimed to characterize the polyphenolic profile and to evaluate the nutraceutical properties of OMWW extracts from two Tuscan olive cultivars, Leccino (CL) and Frantoio (CF), collected during different time points in EVOO production. METHOD: After a liquid-liquid extraction, the HPLC and LC-MS/MS analysis of OMWW extracts confirmed the presence of 18 polyphenolic compounds. RESULTS: The polyphenol composition varied between the cultivars and during maturation stages. Notably, oleacein was detected at remarkably high levels in CL1 and CF1 extracts (314.628 ± 19.535 and 227.273 ± 3.974 µg/mg, respectively). All samples demonstrated scavenging effects on free radicals (DPPH and ABTS assays) and an anti-inflammatory potential by inhibiting cyclooxygenase (COX) enzymes. CONCLUSIONS: This study highlights the nutraceutical potential of OMWW extracts, emphasizing their antioxidant, antiradical, and anti-inflammatory activities. The results demonstrate the influence of olive cultivar, maturation stage, and extraction process on the polyphenolic composition and the bioactivity of OMWW extracts. These findings support a more profitable reuse of OMWW as an innovative, renewable, and low-cost source of dietary polyphenols with potential applications as functional ingredients in the development of dietary supplements, as well as in the pharmaceutical and cosmetics industries.


Assuntos
Olea , Águas Residuárias , Polifenóis , Cromatografia Líquida , Espectrometria de Massas em Tandem , Suplementos Nutricionais , Resíduos , Extratos Vegetais/farmacologia
4.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446813

RESUMO

(1) Background: In recent years, numerous studies have highlighted the beneficial effects of extra virgin olive oil (EVOO) as an active ingredient against chronic diseases. The properties of EVOO are due to its peculiar composition, mainly to its rich content of polyphenols. In fact, polyphenols may contribute to counteract oxidative stress, which often accompanies chronic diseases. In this work, the antioxidant effects of high-value polyphenol oleocanthal (OC) and its main metabolites, tyrosol (Tyr) and oleocanthalic acid (OA), respectively, have been investigated along with their impact on cell viability. (2) Methods: OC, Tyr, and OA have been evaluated regarding antiradical properties in term of scavenging capacity towards biologically relevant reactive species, including O2●-, HOCl, and ROO●, as well as their antioxidant/antiradical capacity (FRAP, DPPH●, ABTS●+). Moreover, the ability to permeate the intestinal membrane was assessed by an intestinal co-culture model composed by Caco-2 and HT29-MTX cell lines. (3) Results: The capacity of OC and Tyr as radical oxygen species (ROS) scavengers, particularly regarding HOCl and O2●-, was clearly demonstrated. Furthermore, the ability to permeate the intestinal co-culture model was plainly proved by the good permeations (>50%) achieved by all compounds. (4) Conclusions: OC, OA, and Tyr revealed promising properties against oxidative diseases.


Assuntos
Antioxidantes , Polifenóis , Humanos , Antioxidantes/farmacologia , Células CACO-2 , Polifenóis/farmacologia , Azeite de Oliva
5.
Nutrients ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904073

RESUMO

(1) Background: Nowadays, the health-promoting properties of extra virgin olive oil (EVOO), including the antioxidant and anti-inflammatory actions, are well recognized and mainly attributed to the different polyphenols, such as oleocanthal and oleacein. In EVOO production, olive leaves represent a high value by-product, showing a wide spectrum of beneficial effects due to the presence of polyphenols, especially oleuropein. Here we report the study of olive leaf extract (OLE)-enriched EVOO extracts, obtained by adding different percentages of OLE to EVOO in order to ameliorate their nutraceutical activities. (2) Methods: The polyphenolic content of the EVOO/OLE extracts was analyzed by HPLC and the Folin-Ciocalteau assay. For further biological testing, an 8% OLE-enriched EVOO extract was chosen. Therefore, antioxidant effects were evaluated by three different methods (DPPH, ABTS, and FRAP), and the anti-inflammatory properties were assessed in terms of cyclooxygenase activity inhibition. (3) Results: The antioxidant and anti-inflammatory profiles of the new EVOO/OLE extract are significantly improved compared to those of EVOO extract; (4) Conclusions: The combination of OLE and EVOO extract can lead to an extract enriched in terms of bioactive polyphenols and endowed with better biological properties than the singular EVOO extract. Therefore, it may represent a new complement in the nutraceutical field.


Assuntos
Anti-Inflamatórios , Suplementos Nutricionais , Azeite de Oliva , Óleos de Plantas , Extratos Vegetais , Anti-Inflamatórios/farmacologia , Polifenóis , Folhas de Planta/química , Antioxidantes/farmacologia , Óleos de Plantas/farmacologia
6.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234738

RESUMO

Polyhydroxyalkanoates (PHAs) are a family of biopolyesters synthesized by various microorganisms. Due to their biocompatibility and biodegradation, PHAs have been proposed for biomedical applications, including tissue engineering scaffolds. Olive leaf extract (OLE) can be obtained from agri-food biowaste and is a source of polyphenols with remarkable antioxidant properties. This study aimed at incorporating OLE inside poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) fibers via electrospinning to obtain bioactive bio-based blends that are useful in wound healing. PHBHV/OLE electrospun fibers with a size of 1.29 ± 0.34 µm were obtained. Fourier transform infrared chemical analysis showed a uniform surface distribution of hydrophilic -OH groups, confirming the presence of OLE in the electrospun fibers. The main OLE phenols were released from the fibers within 6 days. The biodegradation of the scaffolds in phosphate buffered saline was investigated, demonstrating an adequate stability in the presence of metalloproteinase 9 (MMP-9), an enzyme produced in chronic wounds. The scaffolds were preliminarily tested in vitro with HFFF2 fibroblasts and HaCaT keratinocytes, suggesting adequate cytocompatibility. PHBHV/OLE fiber meshes hold promising features for wound healing, including the treatment of ulcers, due to the long period of durability in an inflamed tissue environment and adequate cytocompatibility.


Assuntos
Poli-Hidroxialcanoatos , Antioxidantes/farmacologia , Hidroxibutiratos/farmacologia , Metaloproteinase 9 da Matriz , Olea , Ácidos Pentanoicos , Fosfatos , Extratos Vegetais , Poliésteres/química , Poli-Hidroxialcanoatos/química , Polifenóis , Estudos Prospectivos , Engenharia Tecidual , Alicerces Teciduais/química , Cicatrização
7.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142566

RESUMO

Cyclin-dependent kinase 5 (Cdk5) is an atypical proline-directed serine/threonine protein kinase well-characterized for its role in the central nervous system rather than in the cell cycle. Indeed, its dysregulation has been strongly implicated in the progression of synaptic dysfunction and neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), and also in the development and progression of a variety of cancers. For this reason, Cdk5 is considered as a promising target for drug design, and the discovery of novel small-molecule Cdk5 inhibitors is of great interest in the medicinal chemistry field. In this context, we employed a machine learning-based virtual screening protocol with subsequent molecular docking, molecular dynamics simulations and binding free energy evaluations. Our virtual screening studies resulted in the identification of two novel Cdk5 inhibitors, highlighting an experimental hit rate of 50% and thus validating the reliability of the in silico workflow. Both identified ligands, compounds CPD1 and CPD4, showed a promising enzyme inhibitory activity and CPD1 also demonstrated a remarkable antiproliferative activity in ovarian and colon cancer cells. These ligands represent a valuable starting point for structure-based hit-optimization studies aimed at identifying new potent Cdk5 inhibitors.


Assuntos
Quinase 5 Dependente de Ciclina , Proteínas Inibidoras de Quinase Dependente de Ciclina , Quinase 5 Dependente de Ciclina/metabolismo , Ligantes , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Prolina , Reprodutibilidade dos Testes , Serina , Treonina
8.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890067

RESUMO

A growing body of evidence underlines the crucial role of GPR55 in physiological and pathological conditions. In fact, GPR55 has recently emerged as a therapeutic target for several diseases, including cancer and neurodegenerative and metabolic disorders. Several lines of evidence highlight GPR55's involvement in the regulation of microglia-mediated neuroinflammation, although the exact molecular mechanism has not been yet elucidated. Nevertheless, there are only a limited number of selective GPR55 ligands reported in the literature. In this work, we designed and synthesized a series of novel GPR55 ligands based on the 3-benzylquinolin-2(1H)-one scaffold, some of which showed excellent binding properties (with Ki values in the low nanomolar range) and almost complete selectivity over cannabinoid receptors. The full agonist profile of all the new derivatives was assessed using the p-ERK activation assay and a computational study was conducted to predict the key interactions with the binding site of the receptor. Our data outline a preliminary structure-activity relationship (SAR) for this class of molecules at GPR55. Some of our compounds are among the most potent GPR55 agonists developed to date and could be useful as tools to validate this receptor as a therapeutic target.

9.
Foods ; 11(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35564077

RESUMO

The health benefits of extra-virgin olive oil (EVOO) are strictly linked to the presence of phenolic compounds, which exhibit numerous nutraceutical properties. In EVOO, the most important class of phenolic compounds is represented by secoiridoids (oleacein and oleocanthal). EVOO is constantly subjected to degradation processes, including hydrolytic and oxidative reactions that influence its phenolic composition. In particular, the hydrolytic reactions determine the transformation of oleocanthal and oleacein into the corresponding phenyl-alcohols, tyrosol, and hydroxytyrosol. Furthermore, oleocanthal by oxidation processes can be converted to oleocanthalic acid. In this study, we evaluated the phenolic composition of three EVOO samples kept at different storage conditions for 15 months, focusing on the variation of oleocanthalic acid content. Specifically, the samples were stored at 4 °C in darkness and at 25 °C with light exposure. The results of our analyses highlighted that in EVOOs exposed to light and maintained at 25 °C, the degradation was more marked than in EVOO stored in dark and at 4 °C, due to the greater influence of external factors on storage conditions. Although chemical-physical characteristics of EVOOs are slightly different depending on provenience and treatment time, the results of this study reveal that storage conditions are fundamental to controlling phenol concentration.

10.
J Med Chem ; 65(10): 7118-7140, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35522977

RESUMO

Monoacylglycerol lipase (MAGL) is the enzyme responsible for the metabolism of 2-arachidonoylglycerol in the brain and the hydrolysis of peripheral monoacylglycerols. Many studies demonstrated beneficial effects deriving from MAGL inhibition for neurodegenerative diseases, inflammatory pathologies, and cancer. MAGL expression is increased in invasive tumors, furnishing free fatty acids as pro-tumorigenic signals and for tumor cell growth. Here, a new class of benzylpiperidine-based MAGL inhibitors was synthesized, leading to the identification of 13, which showed potent reversible and selective MAGL inhibition. Associated with MAGL overexpression and the prognostic role in pancreatic cancer, derivative 13 showed antiproliferative activity and apoptosis induction, as well as the ability to reduce cell migration in primary pancreatic cancer cultures, and displayed a synergistic interaction with the chemotherapeutic drug gemcitabine. These results suggest that the class of benzylpiperidine-based MAGL inhibitors have potential as a new class of therapeutic agents and MAGL could play a role in pancreatic cancer.


Assuntos
Monoacilglicerol Lipases , Neoplasias Pancreáticas , Proliferação de Células , Inibidores Enzimáticos/metabolismo , Humanos , Monoglicerídeos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico
11.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216217

RESUMO

The use of in silico toxicity prediction methods plays an important role in the selection of lead compounds and in ADMET studies since in vitro and in vivo methods are often limited by ethics, time, budget and other resources. In this context, we present our new web tool VenomPred, a user-friendly platform for evaluating the potential mutagenic, hepatotoxic, carcinogenic and estrogenic effects of small molecules. VenomPred platform employs several in-house Machine Learning (ML) models developed with datasets derived from VEGA QSAR, a software that includes a comprehensive collection of different toxicity models and has been used as a reference for building and evaluating our ML models. The results showed that our models achieved equal or better performance than those obtained with the reference models included in VEGA QSAR. In order to improve the predictive performance of our platform, we adopted a consensus approach combining the results of different ML models, which was able to predict chemical toxicity better than the single models. This improved method was thus implemented in the VenomPred platform, a freely accessible webserver that takes the SMILES (Simplified Molecular-Input Line-Entry System) strings of the compounds as input and sends the prediction results providing a probability score about their potential toxicity.


Assuntos
Carcinógenos/toxicidade , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Mutagênicos/efeitos adversos , Bibliotecas de Moléculas Pequenas/efeitos adversos , Bibliotecas de Moléculas Pequenas/química , Simulação por Computador , Aprendizado de Máquina , Mutagênese/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Software
12.
J Enzyme Inhib Med Chem ; 37(1): 145-150, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894990

RESUMO

PIN1 is considered as a therapeutic target for a wide variety of tumours. However, most of known inhibitors are devoid of cellular activity despite their good enzyme inhibitory profile. Hence, the lack of effective compounds for the clinic makes the identification of novel PIN1 inhibitors a hot topic in the medicinal chemistry field. In this work, we reported a virtual screening study for the identification of new promising PIN1 inhibitors. A receptor-based procedure was applied to screen different chemical databases of commercial compounds. Based on the whole workflow, two compounds were selected and biologically evaluated. Both ligands, compounds VS1 and VS2, showed a good enzyme inhibitory activity and VS2 also demonstrated a promising antitumoral activity in ovarian cancer cells. These results confirmed the reliability of our in silico protocol and provided a structurally novel ligand as a valuable starting point for the development of new PIN1 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Relação Estrutura-Atividade
13.
Front Nutr ; 8: 715183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671630

RESUMO

Liver fibrosis, which is the outcome of wound-healing response to chronic liver damage, represents an unmet clinical need. This study evaluated the anti-fibrotic and anti-inflammatory effects of the polyphenol oleocanthal (OC) extracted from extra virgin olive oil (EVOO) by an in vitro/in vivo approach. The hepatic cell lines LX2 and HepG2 were used as in vitro models. The mRNA expression of pro-fibrogenic markers, namely alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 chain (COL1A1), a panel of metalloproteinases (MMP1, MMP2, MMP3, MMP7, MMP9) and vascular endothelial growth factor A (VEGFA) as well as the pro-oxidant genes NADPH oxidases (NOXs) 1 and 4 were evaluated in TGF-ß activated LX2 cells by qRT-PCR. α-SMA and COL1A1 protein expression was assessed by immunofluorescence coupled to confocal microscopy. VEGFA release from LX2 was measured by ELISA. We also evaluated the amount of reactive oxygen species (ROS) produced by H2O2 activated- HepG2 cells. In vivo, OC was administered daily by oral gavage to Balb/C mice with CCl4-induced liver fibrosis. In this model, we measured the mRNA hepatic expression of the three pro-inflammatory interleukins (IL) IL6, IL17, IL23, chemokines such as C-C Motif Chemokine Ligand 2 (CCL2) and C-X-C Motif Chemokine Ligand 12 (CXCL12), and selected miRNAs (miR-181-5p, miR-221-3p, miR-29b-3p and miR-101b-3p) by qRT-PCR. We demonstrated that OC significantly downregulated the gene/protein expression of α-SMA, COL1A1, MMP2, MMP3, MMP7 and VEGF as well as the oxidative enzymes NOX1 and 4 in TGFß1-activated LX2 cells, and reduced the production of ROS by HepG2. In vivo OC, beside causing a significant reduction of fibrosis at histological assessment, counteracted the CCl4-induced upregulation of pro-fibrotic and inflammatory genes. Moreover, OC upregulated the anti-fibrotic miRNAs (miR-29b-3p and miR-101b-3p) reduced in fibrotic mice, while downregulated the pro-fibrotic miRNAs (miR-221-3p and miR-181-5p), which were dramatically upregulated in fibrotic mice. In conclusion, OC exerts a promising antifibrotic effect via a combined reduction of oxidative stress and inflammation involving putative miRNAs, which in turn reduces hepatic stellate cells activation and liver fibrosis.

14.
Eur J Med Chem ; 223: 113679, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34218085

RESUMO

Monoacylglycerol lipase (MAGL) is an enzyme belonging to the endocannabinoid system that mainly metabolizes the endocannabinoid 2-arachidonoylglycerol (2-AG). Numerous studies have shown the involvement of this enzyme in various pathological conditions such as pain, cancer progression, Parkinson's and Alzheimer's disease, thus encouraging the development of new MAGL modulators. In this context, we developed new diphenylsulfide-benzoylpiperidine derivatives characterized by a high enzymatic MAGL inhibition activity in the low nanomolar range, a reversible mechanism of action and selectivity. The three most active compounds (15-17) induced an appreciable inhibition of cell viability in a panel of nine cancer cell lines, with IC50 values ranging between 0.32 and 10 µM, thus highlighting their potential as novel anticancer agents.


Assuntos
Inibidores Enzimáticos/química , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/química , Sulfetos/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade
15.
Antioxidants (Basel) ; 10(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801925

RESUMO

Neurodegenerative diseases are driven by several mechanisms such as inflammation, abnormal protein aggregation, excitotoxicity, mitochondrial dysfunction and oxidative stress. So far, no therapeutic strategies are available for neurodegenerative diseases and in recent years the research is focusing on bioactive molecules present in food. In particular, extra-virgin olive oil (EVOO) phenols have been associated to neuroprotection. In this study, we investigated the potential antioxidant and neuroprotective activity of two different EVOO extracts obtained from Quercetano cultivar trees grown in two different areas (plain and hill) of the Tuscany region (Italy). The different geographical origin of the orchards influenced phenol composition. Plain extract presented a higher content of phenyl ethyl alcohols, cinnammic acids, oleacein, oleocanthal and flavones; meanwhile, hill extract was richer in lignans. Hill extract was more effective in protecting differentiated SH-SY5Y cells from peroxide stress thanks to a marked upregulation of the antioxidant enzymes heme oxygenase 1, NADPH quinone oxidoreductase 1, thioredoxin Reductase 1 and glutathione reductase. Proteomic analysis revealed that hill extract plays a role in the regulation of proteins involved in neuronal plasticity and activation of neurotrophic factors such as BDNF. In conclusion, these data demonstrate that EVOOs can have important neuroprotective activities, but these effects are strictly related to their specific phenol composition.

16.
Curr Med Chem ; 28(33): 6730-6752, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33761849

RESUMO

Several clinical studies have shown that exposure of skin to solar ultraviolet (UV) radiation causes adverse effects, such as inflammation, oxidative stress and DNA damage. As a result, different skin disorders can arise, among which are skin cancer, including non-melanoma skin cancer (NMSC) and melanoma (MM). Phenolic compounds are plant-derived secondary metabolites with a well-known antioxidant activity, able to counteract the negative effects of UV radiation. In this review, we discuss the effects of some selected phenols on NMSC and MM, demonstrating that they can be useful in the prevention and in the treatment of these types of tumors. Moreover, we report the mechanisms by which these phenols carry out their antitumor action. In vitro and in vivo studies have highlighted that many phenols are capable of inducing photoprotection, apoptosis and autophagy. They can also reduce DNA methylation, tumorigenesis, tumor incidence and proliferation. Moreover, we describe some examples of plant extracts, whose anticancer activity appears to be better than that of single phenols. A great concordance of results emerged, despite the differences in experimental methods. Therefore, the knowledge compiled here could provide the basis for conducting some well-organized clinical trials to validate the chemopreventive and the therapeutic potential of some phenolic compounds in patients with NMSC and MM.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/prevenção & controle , Fenóis/uso terapêutico , Pele , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta
17.
Expert Opin Ther Pat ; 31(2): 153-168, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33085920

RESUMO

INTRODUCTION: Monoacylglycerol lipase (MAGL) belongs to the endocannabinoid system and is responsible for the inactivation of endocannabinoid 2-arachidonoylglycerol. Importantly, it was found that MAGL degradation of lipids in cancer cells enhances the availability of free fatty acids for new cellular membrane formation and pro-oncogenic lipid modulators. The multifaceted role of MAGL has greatly stimulated the search for MAGL inhibitors, which could be effective to treat diseases, such as inflammation, neurodegeneration and cancer. AREAS COVERED: This review covers patents published since 2018 up to now, concerning new MAGL inhibitors and their potential therapeutic applications. EXPERT OPINION: In the years 2018-2020, several well-known chemical scaffolds of MAGL inhibitors have been further optimized and developed and some new chemical classes have also been identified as MAGL inhibitors. Moreover, an increasing number of scientific publications covering MAGL inhibitors is focused on MAGL-specific positron emission tomography (PET) ligands. The numerous efforts of pharmaceutical companies and academic research groups finalized to find new potent MAGL inhibitors confirm that this research area is rapidly growing. Nevertheless, most of the patented compounds still belong to the large group of irreversible MAGL inhibitors, highlighting that the development of reversible MAGL inhibitors is still an unmet pharmaceutical need.


Assuntos
Desenvolvimento de Medicamentos , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Animais , Endocanabinoides/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Monoacilglicerol Lipases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Patentes como Assunto
18.
Eur J Med Chem ; 209: 112857, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045662

RESUMO

An interesting enzyme of the endocannabinoid system is monoacylglycerol lipase (MAGL). This enzyme, which metabolizes the endocannabinoid 2-arachidonoylglycerol (2-AG), has attracted great interest due to its involvement in several physiological and pathological processes, such as cancer progression. Experimental evidences highlighted some drawbacks associated with the use of irreversible MAGL inhibitors in vivo, therefore the research field concerning reversible inhibitors is rapidly growing. In the present manuscript, the class of benzoylpiperidine-based MAGL inhibitors was further expanded and optimized. Enzymatic assays identified some compounds in the low nanomolar range and steered molecular dynamics simulations predicted the dissociation itinerary of one of the best compounds from the enzyme, confirming the observed structure-activity relationship. Biological evaluation, including assays in intact U937 cells and competitive activity-based protein profiling experiments in mouse brain membranes, confirmed the selectivity of the selected compounds for MAGL versus other components of the endocannabinoid system. An antiproliferative ability in a panel of cancer cell lines highlighted their potential as potential anticancer agents. Future studies on the potential use of these compounds in the clinical setting are also supported by the inhibition of cell growth observed both in cancer organoids derived from high grade serous ovarian cancer patients and in pancreatic ductal adenocarcinoma primary cells, which showed genetic and histological features very similar to the primary tumors.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/química , Piperidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Humanos , Camundongos , Simulação de Dinâmica Molecular , Monoacilglicerol Lipases/metabolismo , Neoplasias/tratamento farmacológico , Piperidinas/síntese química
19.
Molecules ; 26(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375358

RESUMO

Monoacylglycerol lipase (MAGL) is an important enzyme of the endocannabinoid system that catalyzes the degradation of the major endocannabinoid 2-arachidonoylglycerol (2-AG). MAGL is associated with pathological conditions such as pain, inflammation and neurodegenerative diseases like Parkinson's and Alzheimer's disease. Furthermore, elevated levels of MAGL have been found in aggressive breast, ovarian and melanoma cancer cells. Due to its different potential therapeutic implications, MAGL is considered as a promising target for drug design and the discovery of novel small-molecule MAGL inhibitors is of great interest in the medicinal chemistry field. In this context, we developed a pharmacophore-based virtual screening protocol combined with molecular docking and molecular dynamics simulations, which showed a final hit rate of 50% validating the reliability of the in silico workflow and led to the identification of two promising and structurally different reversible MAGL inhibitors, VS1 and VS2. These ligands represent a valuable starting point for structure-based hit-optimization studies aimed at identifying new potent MAGL inhibitors.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Interface Usuário-Computador , Sítios de Ligação , Inibidores Enzimáticos/química , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo
20.
Front Pharmacol ; 11: 574317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071785

RESUMO

Extra-virgin olive oil (EVOO) polyphenols contribute to Mediterranean diet health-promoting properties. One of the most abundant secoiridoid present in EVOO, Oleacein (OA), demonstrated anticancer activity against several tumors. Nevertheless, its role against melanoma has not still investigated. This study aimed at determining in vitro the antimelanoma activity of OA and the relative mechanism of action. OA induced cell growth inhibition in 501Mel melanoma cells with an IC50 in the low micromolar range of concentrations. Moreover, an OA concentration approximating the IC50 induced G1/S phase arrest, DNA fragmentation, and downregulation of genes encoding antiapoptotic (BCL2 and MCL1) and proproliferative (c-KIT, K-RAS, PIK3R3, mTOR) proteins, while increased transcription levels of the proapoptotic protein BAX. Concordantly, OA increased the levels of miR-193a-3p (targeting MCL1, c-KIT and K-RAS), miR-193a-5p (targeting PIK3R3 and mTOR), miR-34a-5p (targeting BCL2 and c-KIT) and miR-16-5p (miR-16-5p targeting BCL2, K-RAS and mTOR), while decreased miR-214-3p (targeting BAX). These modulatory effects might contribute to the inhibition of 501Mel melanoma cell growth observed after treatment with an olive leaves-derived formulation rich in OA, with potential application against in situ cutaneous melanoma. Altogether, these results demonstrate the ability of OA to contrast the proliferation of cutaneous melanoma cells through the transcriptional modulation of relevant genes and microRNAs, confirming the anticancer potential of EVOO and suggesting OA as a chemopreventive agent for cancer disease therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA