Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 13335, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190603

RESUMO

Detection of genetic exchange has been a limiting factor to deepen the knowledge on the mechanisms by which Trypanosoma cruzi is able to generate progeny and genetic diversity. Here we show that incorporation of halogenated thymidine analogues, followed by immunostaining, is a reliable method not only to detect T. cruzi fused-cell hybrids, but also to quantify their percentage in populations of this parasite. Through this approach, we were able to detect and quantify fused-cell hybrids of T. cruzi clones CL Brener and Y. Given the increased detection of fused-cell hybrids in naturally-occurring hybrid CL Brener strain, which displays increased levels of RAD51 and BRCA2 transcripts, we further investigated the role of Rad51 - a recombinase involved in homologous recombination - in the process of genetic exchange. We also verified that the detection of fused-cell hybrids in T. cruzi overexpressing RAD51 is increased when compared to wild-type cells, suggesting a key role for Rad51 either in the formation or in the stabilization of fused-cell hybrids in this organism.


Assuntos
Recombinação Homóloga/fisiologia , Proteínas de Protozoários/metabolismo , Rad51 Recombinase/metabolismo , Trypanosoma cruzi/enzimologia , Proteínas de Protozoários/genética , Rad51 Recombinase/genética , Trypanosoma cruzi/genética
2.
PLoS One ; 9(5): e97526, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24842666

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress.


Assuntos
Proteínas de Protozoários/análise , Radiação Ionizante , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/efeitos da radiação , Eletroforese em Gel Bidimensional , Proteômica
3.
Mem. Inst. Oswaldo Cruz ; 108(6): 707-717, set. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-685497

RESUMO

Schistosomiasis is a major neglected tropical disease caused by trematodes from the genus Schistosoma. Because schistosomes exhibit a complex life cycle and numerous mechanisms for regulating gene expression, it is believed that spliced leader (SL) trans-splicing could play an important role in the biology of these parasites. The purpose of this study was to investigate the function of trans-splicing in Schistosoma mansoni through analysis of genes that may be regulated by this mechanism and via silencing SL-containing transcripts through RNA interference. Here, we report our analysis of SL transcript-enriched cDNA libraries from different S. mansoni life stages. Our results show that the trans-splicing mechanism is apparently not associated with specific genes, subcellular localisations or life stages. In cross-species comparisons, even though the sets of genes that are subject to SL trans-splicing regulation appear to differ between organisms, several commonly shared orthologues were observed. Knockdown of trans-spliced transcripts in sporocysts resulted in a systemic reduction of the expression levels of all tested trans-spliced transcripts; however, the only phenotypic effect observed was diminished larval size. Further studies involving the findings from this work will provide new insights into the role of trans-splicing in the biology of S. mansoni and other organisms. All Expressed Sequence Tags generated in this study were submitted to dbEST as five different libraries. The accessions for each library and for the individual sequences are as follows: (i) adult worms of mixed sexes (LIBEST_027999: JZ139310 - JZ139779), (ii) female adult worms (LIBEST_028000: JZ139780 - JZ140379), (iii) male adult worms (LIBEST_028001: JZ140380 - JZ141002), (iv) eggs (LIBEST_028002: JZ141003 - JZ141497) and (v) schistosomula (LIBEST_028003: JZ141498 - JZ141974).


Assuntos
Animais , Feminino , Masculino , Técnicas de Silenciamento de Genes , Precursores de RNA/isolamento & purificação , RNA Líder para Processamento/genética , Schistosoma mansoni/genética , Trans-Splicing/fisiologia , Etiquetas de Sequências Expressas , Biblioteca Gênica , Regulação da Expressão Gênica/genética , Larva , Estágios do Ciclo de Vida/genética , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Precursores de RNA/genética , RNA de Cadeia Dupla , RNA Interferente Pequeno/metabolismo , Schistosoma mansoni/crescimento & desenvolvimento , Trans-Splicing/genética
4.
J Mol Graph Model ; 39: 29-38, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23220279

RESUMO

Zinc finger proteins are widely found in eukaryotes, representing an important class of DNA-binding proteins frequently involved in transcriptional regulation. Zinc finger motifs are composed by two antiparallel ß-strands and one α-helix, stabilized by a zinc ion coordinated by conserved histidine and cysteine residues. In Schistosoma mansoni, these regulatory proteins are known to modulate morphological and physiological changes, having crucial roles in parasite development. A previously described C(2)H(2) zinc finger protein, SmZF1, was shown to be present in cell nuclei of different life stages of S. mansoni and to activate gene transcription in a heterologous system. A high-quality SmZF1 tridimensional structure was generated using comparative modeling. Molecular dynamics simulations of the obtained structure revealed stability of the zinc fingers motifs and high flexibility on the terminals, comparable to the profile observed on the template X-ray structure based on thermal b-factors. Based on the protein tridimensional features and amino acid composition, we were able to characterize four C(2)H(2) zinc finger motifs, the first involved in protein-protein interactions while the three others involved in DNA binding. We defined a consensus DNA binding sequence using three distinct algorithms and further carried out docking calculations, which revealed the interaction of fingers 2-4 with the predicted DNA. A search for S. mansoni genes presenting putative SmZF1 binding sites revealed 415 genes hypothetically under SmZF1 control. Using an automatic annotation and GO assignment approach, we found that the majority of those genes code for proteins involved in developmental processes. Taken together, these results present a consistent base to the structural and functional characterization of SmZF1.


Assuntos
Proteínas de Helminto/química , Modelos Moleculares , Fatores de Transcrição/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Mem. Inst. Oswaldo Cruz ; 107(1): 39-47, Feb. 2012. ilus, mapas, tab
Artigo em Inglês | LILACS | ID: lil-612804

RESUMO

Leishmania infantum (syn. Leishmania chagasi) is the etiological agent of visceral leishmaniasis (VL) in Brazil. The epidemiology of VL is poorly understood. Therefore, a more detailed molecular characterization at an intraspecific level is certainly needed. Herein, three independent molecular methods, multilocus microsatellite typing (MLMT), random amplification of polymorphic DNA (RAPD) and simple sequence repeats-polymerase chain reaction (SSR-PCR), were used to evaluate the genetic diversity of 53 L. infantum isolates from five different endemic areas in Brazil. Population structures were inferred by distance-based and Bayesian-based approaches. Eighteen very similar genotypes were detected by MLMT, most of them differed in only one locus and no correlation was found between MLMT profiles, geographical origin or the estimated population structure. However, complex profiles composed of 182 bands obtained by both RAPD and SSR-PCR assays gave different results. Unweighted pair group method with arithmetic mean trees built from these data revealed a high degree of homogeneity within isolates of L. infantum. Interestingly, despite this genetic homogeneity, most of the isolates clustered according to their geographical origin.


Assuntos
Animais , Cães , Humanos , DNA de Protozoário/genética , Variação Genética/genética , Leishmania infantum/genética , Brasil , Análise por Conglomerados , Genótipo , Leishmania infantum/isolamento & purificação , Repetições de Microssatélites , Tipagem Molecular , Reação em Cadeia da Polimerase , Técnica de Amplificação ao Acaso de DNA Polimórfico
6.
PLoS One ; 7(1): e29596, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22247781

RESUMO

Trypanosoma cruzi is an organism highly resistant to ionizing radiation. Following a dose of 500 Gy of gamma radiation, the fragmented genomic DNA is gradually reconstructed and the pattern of chromosomal bands is restored in less than 48 hours. Cell growth arrests after irradiation but, while DNA is completely fragmented, RNA maintains its integrity. In this work we compared the transcriptional profiles of irradiated and non-irradiated epimastigotes at different time points after irradiation using microarray. In total, 273 genes were differentially expressed; from these, 160 were up-regulated and 113 down-regulated. We found that genes with predicted functions are the most prevalent in the down-regulated gene category. Translation and protein metabolic processes, as well as generation of precursor of metabolites and energy pathways were affected. In contrast, the up-regulated category was mainly composed of obsolete sequences (which included some genes of the kinetoplast DNA), genes coding for hypothetical proteins, and Retrotransposon Hot Spot genes. Finally, the tyrosyl-DNA phosphodiesterase 1, a gene involved in double-strand DNA break repair process, was up-regulated. Our study demonstrated the peculiar response to ionizing radiation, raising questions about how this organism changes its gene expression to manage such a harmful stress.


Assuntos
Biomarcadores/metabolismo , DNA de Cinetoplasto/efeitos da radiação , Raios gama , Expressão Gênica/efeitos da radiação , Genes de Protozoários/genética , Trypanosoma cruzi/genética , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Trypanosoma cruzi/crescimento & desenvolvimento
7.
Mem. Inst. Oswaldo Cruz ; 106(8): 948-956, Dec. 2011. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-610969

RESUMO

We examined strains of Trypanosoma cruzi isolated from patients with acute Chagas disease that had been acquired by oral transmission in the state of Santa Catarina, Brazil (2005) and two isolates that had been obtained from a marsupial (Didelphis aurita) and a vector (Triatoma tibiamaculata). These strains were characterised through their biological behaviour and isoenzymic profiles and genotyped according to the new Taxonomy Consensus (2009) based on the discrete typing unities, that is, T. cruzi genotypes I-VI. All strains exhibited the biological behaviour of biodeme type II. In six isolates, late peaks of parasitaemia, beyond the 20th day, suggested a double infection with biodemes II + III. Isoenzymes revealed Z2 or mixed Z1 and Z2 profiles. Genotyping was performed using three polymorphic genes (cytochrome oxidase II, spliced leader intergenic region and 24Sα rRNA) and the restriction fragment length polymorphism of the kDNA minicircles. Based on these markers, all but four isolates were characterised as T. cruzi II genotypes. Four mixed populations were identified: SC90, SC93 and SC97 (T. cruzi I + T. cruzi II) and SC95 (T. cruzi I + T. cruzi VI). Comparison of the results obtained by different methods was essential for the correct identification of the mixed populations and major lineages involved indicating that characterisation by different methods can provide new insights into the relationship between phenotypic and genotypic aspects of parasite behaviour.


Assuntos
Animais , Humanos , Doença de Chagas/parasitologia , Trypanosoma cruzi/genética , Brasil/epidemiologia , Consenso , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Surtos de Doenças , DNA de Protozoário/genética , Didelphis/parasitologia , Reservatórios de Doenças/parasitologia , Genótipo , Insetos Vetores/parasitologia , RNA Ribossômico/genética , Triatoma/parasitologia , Trypanosoma cruzi/classificação , Trypanosoma cruzi/patogenicidade
8.
Mem. Inst. Oswaldo Cruz ; 104(supl.1): 108-114, July 2009. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-520871

RESUMO

Although the genome of Trypanosoma cruzi has been completely sequenced, little is known about its population structure and evolution. Since 1999, two major evolutionary lineages presenting distinct epidemiological characteristics have been recognised: T. cruzi I and T. cruzi II. We describe new and important aspects of the population structure of the parasite, and unequivocally characterise a third ancestral lineage that we propose to name T. cruzi III. Through a careful analysis of haplotypes (blocks of genes that are stably transmitted from generation to generation of the parasite), we inferred at least two hybridisation events between the parental lineages T. cruzi II and T. cruzi III. The strain CL Brener, whose genome was sequenced, is one such hybrid. Based on these results, we propose a simple evolutionary model based on three ancestral genomes, T. cruzi I, T. cruzi II and T. cruzi III. At least two hybridisation events produced evolutionarily viable progeny, and T. cruzi III was the cytoplasmic donor for the resulting offspring (as identified by the mitochondrial clade of the hybrid strains) in both events. This model should be useful to inform evolutionary and pathogenetic hypotheses regarding T. cruzi.


Assuntos
Evolução Molecular , Genoma de Protozoário/genética , Hibridização Genética , Haplótipos/genética , Trypanosoma cruzi/genética , DNA Mitocondrial/genética , DNA de Protozoário/genética , Genética Populacional
9.
Mol Biochem Parasitol ; 149(2): 191-200, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16828179

RESUMO

The Rad51 gene encodes a highly conserved enzyme involved in DNA double-strand break (DSB) repair and recombination processes. We cloned and characterized the Rad51 gene from Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. This gene is expressed in all three forms of the parasite life cycle, with mRNA levels that are two-fold more abundant in the intracellular amastigote form. The recombinase activity of the TcRad51 gene product was verified by an increase in recombination events observed in transfected mammalian cells expressing TcRad51 and containing two inactive copies of the neomycin-resistant gene. As a component of the DSB repair machinery, we investigated the role of TcRad51 in the resistance to ionizing radiation and zeocin treatment presented by T. cruzi. When exposed to gamma irradiation, different strains of the parasite survive to dosages as high as 1 kGy. A role for TcRad51 in this process was evidenced by the increased expression of its mRNA after irradiation. Furthermore, transfected parasites over-expressing TcRad51 have a faster kinetics of recovery of the normal pattern of chromosomal bands after irradiation as well as a higher resistance to zeocin treatment than do wild-type cultures.


Assuntos
Genes de Protozoários , Proteínas de Protozoários/genética , Rad51 Recombinase/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/efeitos da radiação , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Cricetinae , DNA de Protozoário/genética , Raios gama , Humanos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Tolerância a Radiação/genética , Recombinação Genética , Homologia de Sequência de Aminoácidos , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/patogenicidade
10.
J Clin Microbiol ; 41(7): 2849-54, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12843011

RESUMO

Randomly amplified polymorphic DNA (RAPD) has been successfully used to detect genetic variations among isolates of Paracoccidioides brasiliensis. However, the usefulness of this technique for assessing important parasitic properties is still unconfirmed. In the present work we further investigated the applicability of RAPD in revealing important intrinsic and extrinsic features of this fungus associated with geographical origin, time of isolation, source of clinical specimen, clinical forms of human disease and also in vitro and in vivo susceptibility to antimicrobial and antifungal drugs. The RAPD patterns allowed us to distinguish all of the analyzed strains, which included 26 clinical isolates, 2 animal isolates, and 1 environmental isolate of P. brasiliensis obtained from different geographic regions, confirming the strong discriminating power of this technique. A phenetic tree, build from the RAPD data, showed that although the two nonclinical Brazilian strains were set together the majority of the clinical Brazilian strains were randomly distributed through different sub-branches of a major cluster without any correlation to any of the parameters analyzed. A second major cluster, however, has grouped isolates from Mato Grosso and Roraima (Brazil) that not only were susceptible in vitro to trimethoprim-sulfamethoxazole but also produced a good in vivo response. These results open new vistas for epidemiological and clinical studies of P. brasiliensis.


Assuntos
Variação Genética , Paracoccidioides/classificação , Paracoccidioidomicose/epidemiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/genética , Paracoccidioides/isolamento & purificação , Paracoccidioidomicose/microbiologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA