Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genet Med ; 25(11): 100925, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37422716

RESUMO

PURPOSE: Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS: An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS: Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION: We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Adulto , Criança , Humanos , Hipertensão Arterial Pulmonar/genética , Mutação , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Predisposição Genética para Doença , Testes Genéticos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Membrana Transportadoras/genética , Receptores de Activinas Tipo II/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Morfogenéticas Ósseas/genética
2.
J Med Genet ; 59(9): 906-911, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34493544

RESUMO

BACKGROUND: The molecular genetic basis of pulmonary arterial hypertension (PAH) is heterogeneous, with at least 26 genes displaying putative evidence for disease causality. Heterozygous variants in the ATP13A3 gene were recently identified as a new cause of adult-onset PAH. However, the contribution of ATP13A3 risk alleles to child-onset PAH remains largely unexplored. METHODS AND RESULTS: We report three families with a novel, autosomal recessive form of childhood-onset PAH due to biallelic ATP13A3 variants. Disease onset ranged from birth to 2.5 years and was characterised by high mortality. Using genome sequencing of parent-offspring trios, we identified a homozygous missense variant in one case, which was subsequently confirmed to cosegregate with disease in an affected sibling. Independently, compound heterozygous variants in ATP13A3 were identified in two affected siblings and in an unrelated third family. The variants included three loss of function variants (two frameshift, one nonsense) and two highly conserved missense substitutions located in the catalytic phosphorylation domain. The children were largely refractory to treatment and four died in early childhood. All parents were heterozygous for the variants and asymptomatic. CONCLUSION: Our findings support biallelic predicted deleterious ATP13A3 variants in autosomal recessive, childhood-onset PAH, indicating likely semidominant dose-dependent inheritance for this gene.


Assuntos
Hipertensão Arterial Pulmonar , Adenosina Trifosfatases/genética , Adulto , Pré-Escolar , Hipertensão Pulmonar Primária Familiar/genética , Heterozigoto , Homozigoto , Humanos , Proteínas de Membrana Transportadoras/genética , Morbidade
3.
Genes (Basel) ; 11(11)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187088

RESUMO

Pulmonary arterial hypertension (PAH) describes a rare, progressive vascular disease caused by the obstruction of pulmonary arterioles, typically resulting in right heart failure. Whilst PAH most often manifests in adulthood, paediatric disease is considered to be a distinct entity with increased morbidity and often an unexplained resistance to current therapies. Recent genetic studies have substantially increased our understanding of PAH pathogenesis, providing opportunities for molecular diagnosis and presymptomatic genetic testing in families. However, the genetic architecture of childhood-onset PAH remains relatively poorly characterised. We sought to investigate a previously unsolved paediatric cohort (n = 18) using whole exome sequencing to improve the molecular diagnosis of childhood-onset PAH. Through a targeted investigation of 26 candidate genes, we applied a rigorous variant filtering methodology to enrich for rare, likely pathogenic variants. This analysis led to the detection of novel PAH risk alleles in five genes, including the first identification of a heterozygous ATP13A3 mutation in childhood-onset disease. In addition, we provide the first independent validation of BMP10 and PDGFD as genetic risk factors for PAH. These data provide a molecular diagnosis in 28% of paediatric cases, reflecting the increased genetic burden in childhood-onset disease and highlighting the importance of next-generation sequencing approaches to diagnostic surveillance.


Assuntos
Hipertensão Arterial Pulmonar/genética , Adenosina Trifosfatases/genética , Proteínas Morfogenéticas Ósseas/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Predisposição Genética para Doença/genética , Humanos , Lactente , Linfocinas/genética , Masculino , Proteínas de Membrana Transportadoras/genética , Mutação , Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Risco , Proteína Smad8/genética , Receptores de Sulfonilureias/genética , Sequenciamento do Exoma/métodos
4.
Nat Commun ; 9(1): 1416, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650961

RESUMO

Pulmonary arterial hypertension (PAH) is a rare disorder with a poor prognosis. Deleterious variation within components of the transforming growth factor-ß pathway, particularly the bone morphogenetic protein type 2 receptor (BMPR2), underlies most heritable forms of PAH. To identify the missing heritability we perform whole-genome sequencing in 1038 PAH index cases and 6385 PAH-negative control subjects. Case-control analyses reveal significant overrepresentation of rare variants in ATP13A3, AQP1 and SOX17, and provide independent validation of a critical role for GDF2 in PAH. We demonstrate familial segregation of mutations in SOX17 and AQP1 with PAH. Mutations in GDF2, encoding a BMPR2 ligand, lead to reduced secretion from transfected cells. In addition, we identify pathogenic mutations in the majority of previously reported PAH genes, and provide evidence for further putative genes. Taken together these findings contribute new insights into the molecular basis of PAH and indicate unexplored pathways for therapeutic intervention.


Assuntos
Adenosina Trifosfatases/química , Aquaporina 1/química , Hipertensão Pulmonar Primária Familiar/genética , Fatores de Diferenciação de Crescimento/química , Proteínas de Membrana Transportadoras/química , Mutação , Fatores de Transcrição SOXF/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adulto , Aquaporina 1/genética , Aquaporina 1/metabolismo , Sequência de Bases , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Estudos de Casos e Controles , Hipertensão Pulmonar Primária Familiar/diagnóstico , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar Primária Familiar/patologia , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Prognóstico , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Sequenciamento Completo do Genoma
5.
Circulation ; 136(21): 2022-2033, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-28972005

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation.


Assuntos
Pressão Arterial/genética , Hipertensão Pulmonar/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Artéria Pulmonar/fisiopatologia , Adulto , Idoso , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Análise Mutacional de DNA , Europa (Continente) , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Hereditariedade , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Valor Preditivo dos Testes , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Tomografia Computadorizada por Raios X , Adulto Jovem
6.
Circ Cardiovasc Genet ; 8(4): 572-581, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25963545

RESUMO

BACKGROUND: Adams-Oliver syndrome (AOS) is a rare disorder characterized by congenital limb defects and scalp cutis aplasia. In a proportion of cases, notable cardiac involvement is also apparent. Despite recent advances in the understanding of the genetic basis of AOS, for the majority of affected subjects, the underlying molecular defect remains unresolved. This study aimed to identify novel genetic determinants of AOS. METHODS AND RESULTS: Whole-exome sequencing was performed for 12 probands, each with a clinical diagnosis of AOS. Analyses led to the identification of novel heterozygous truncating NOTCH1 mutations (c.1649dupA and c.6049_6050delTC) in 2 kindreds in which AOS was segregating as an autosomal dominant trait. Screening a cohort of 52 unrelated AOS subjects, we detected 8 additional unique NOTCH1 mutations, including 3 de novo amino acid substitutions, all within the ligand-binding domain. Congenital heart anomalies were noted in 47% (8/17) of NOTCH1-positive probands and affected family members. In leukocyte-derived RNA from subjects harboring NOTCH1 extracellular domain mutations, we observed significant reduction of NOTCH1 expression, suggesting instability and degradation of mutant mRNA transcripts by the cellular machinery. Transient transfection of mutagenized NOTCH1 missense constructs also revealed significant reduction in gene expression. Mutant NOTCH1 expression was associated with downregulation of the Notch target genes HEY1 and HES1, indicating that NOTCH1-related AOS arises through dysregulation of the Notch signaling pathway. CONCLUSIONS: These findings highlight a key role for NOTCH1 across a range of developmental anomalies that include cardiac defects and implicate NOTCH1 haploinsufficiency as a likely molecular mechanism for this group of disorders.


Assuntos
Displasia Ectodérmica/genética , Predisposição Genética para Doença/genética , Haploinsuficiência , Cardiopatias Congênitas/genética , Deformidades Congênitas dos Membros/genética , Receptor Notch1/genética , Dermatoses do Couro Cabeludo/congênito , Adolescente , Adulto , Sequência de Bases , Criança , Exoma/genética , Saúde da Família , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Linhagem , Estrutura Terciária de Proteína , Receptor Notch1/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Dermatoses do Couro Cabeludo/genética , Análise de Sequência de DNA/métodos , Transdução de Sinais/genética , Adulto Jovem
8.
Circulation ; 126(9): 1099-109, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22832786

RESUMO

BACKGROUND: Beyond their role as innate immune effectors, natural killer (NK) cells are emerging as important regulators of angiogenesis and vascular remodeling. Pulmonary arterial hypertension (PAH) is characterized by severe pulmonary vascular remodeling and has long been associated with immune dysfunction. Despite this association, a role for NK cells in disease pathology has not yet been described. METHODS AND RESULTS: Analysis of whole blood lymphocytes and isolated NK cells from PAH patients revealed an expansion of the functionally defective CD56(-)/CD16(+) NK subset that was not observed in patients with chronic thromboembolic pulmonary hypertension. NK cells from PAH patients also displayed decreased levels of the activating receptor NKp46 and the killer immunoglobulin-like receptors 2DL1/S1 and 3DL1, reduced secretion of the cytokine macrophage inflammatory protein-1ß, and a significant impairment in cytolytic function associated with decreased killer immunoglobulin-like receptor 3DL1 expression. Genotyping patients (n=222) and controls (n=191) for killer immunoglobulin-like receptor gene polymorphisms did not explain these observations. Rather, we show that NK cells from PAH patients exhibit increased responsiveness to transforming growth factor-ß, which specifically downregulates disease-associated killer immunoglobulin-like receptors. NK cell number and cytotoxicity were similarly decreased in the monocrotaline rat and chronic hypoxia mouse models of PAH, accompanied by reduced production of interferon-γ in NK cells from hypoxic mice. NK cells from PAH patients also produced elevated quantities of matrix metalloproteinase 9, consistent with a capacity to influence vascular remodeling. CONCLUSIONS: Our work is the first to identify an impairment of NK cells in PAH and suggests a novel and substantive role for innate immunity in the pathobiology of this disease.


Assuntos
Hipertensão Pulmonar/imunologia , Células Matadoras Naturais/imunologia , Adulto , Idoso , Animais , Antígeno CD56/análise , Quimiocina CCL4/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Proteínas Ligadas por GPI/análise , Genótipo , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Imunofenotipagem , Células Matadoras Naturais/química , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/patologia , Masculino , Metaloproteinase 9 da Matriz/análise , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor 1 Desencadeador da Citotoxicidade Natural , Embolia Pulmonar/complicações , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de IgG/análise , Receptores KIR2DL1/biossíntese , Receptores KIR2DL1/genética , Receptores KIR3DL1/biossíntese , Receptores KIR3DL1/genética , Receptores KIR3DS1/biossíntese , Receptores KIR3DS1/genética , Fator de Crescimento Transformador beta/farmacologia
9.
Am J Hum Genet ; 88(5): 574-85, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565291

RESUMO

Regulation of cell proliferation and motility is essential for normal development. The Rho family of GTPases plays a critical role in the control of cell polarity and migration by effecting the cytoskeleton, membrane trafficking, and cell adhesion. We investigated a recognized developmental disorder, Adams-Oliver syndrome (AOS), characterized by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). Through a genome-wide linkage analysis, we detected a locus for autosomal-dominant ACC-TTLD on 3q generating a maximum LOD score of 4.93 at marker rs1464311. Candidate-gene- and exome-based sequencing led to the identification of independent premature truncating mutations in the terminal exon of the Rho GTPase-activating protein 31 gene, ARHGAP31, which encodes a Cdc42/Rac1 regulatory protein. Mutant transcripts are stable and increase ARHGAP31 activity in vitro through a gain-of-function mechanism. Constitutively active ARHGAP31 mutations result in a loss of available active Cdc42 and consequently disrupt actin cytoskeletal structures. Arhgap31 expression in the mouse is substantially restricted to the terminal limb buds and craniofacial processes during early development; these locations closely mirror the sites of impaired organogenesis that characterize this syndrome. These data identify the requirement for regulated Cdc42 and/or Rac1 signaling processes during early human development.


Assuntos
Displasia Ectodérmica/genética , Proteínas Ativadoras de GTPase/genética , Mutação , Actinas/metabolismo , Adesão Celular , Movimento Celular , Polaridade Celular , Proliferação de Células , Mapeamento Cromossômico , Citoesqueleto/metabolismo , Análise Mutacional de DNA , Displasia Ectodérmica/embriologia , Feminino , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Masculino , Dermatoses do Couro Cabeludo/congênito , Dermatoses do Couro Cabeludo/embriologia , Dermatoses do Couro Cabeludo/genética , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
Hum Mutat ; 32(2): 231-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280149

RESUMO

Dyggve-Melchior-Clausen syndrome (DMC), a severe autosomal recessive skeletal disorder with mental retardation, is caused by mutation of the gene encoding Dymeclin (DYM). Employing patient fibroblasts with mutations characterized at the genomic and, for the first time, transcript level, we identified profound disruption of Golgi organization as a pathogenic feature, resolved by transfection of heterologous wild-type Dymeclin. Collagen targeting appeared defective in DMC cells leading to near complete absence of cell surface collagen fibers. DMC cells have an elevated apoptotic index (P< 0.01) likely due to a stress response contingent upon Golgi-related trafficking defects. We performed spatiotemporal mapping of Dymeclin expression in zebrafish embryos and identified high levels of transcript in brain and cartilage during early development. Finally, in a chondrocyte cDNA library, we identified two novel secretion pathway proteins as Dymeclin interacting partners: GOLM1 and PPIB. Together these data identify the role of Dymeclin in secretory pathways essential to endochondral bone formation during early development.


Assuntos
Desenvolvimento Ósseo , Matriz Extracelular/metabolismo , Complexo de Golgi/metabolismo , Proteínas/metabolismo , Animais , Células Cultivadas , Condrogênese , Citoplasma/metabolismo , Nanismo/metabolismo , Fibroblastos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Células HeLa , Humanos , Deficiência Intelectual/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Osteocondrodisplasias/congênito , Osteocondrodisplasias/metabolismo , Pele/citologia , Técnicas do Sistema de Duplo-Híbrido , Peixe-Zebra/embriologia
11.
Circulation ; 122(9): 920-7, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20713898

RESUMO

BACKGROUND: Inflammation is a feature of pulmonary arterial hypertension (PAH), and increased circulating levels of cytokines are reported in patients with PAH. However, to date, no information exists on the significance of elevated cytokines or their potential as biomarkers. We sought to determine the levels of a range of cytokines in PAH and to examine their impact on survival and relationship to hemodynamic indexes. METHODS AND RESULTS: We measured levels of serum cytokines (tumor necrosis factor-alpha, interferon-gamma and interleukin-1beta, -2, -4, -5, -6, -8, -10, -12p70, and -13) using ELISAs in idiopathic and heritable PAH patients (n=60). Concurrent clinical data included hemodynamics, 6-minute walk distance, and survival time from sampling to death or transplantation. Healthy volunteers served as control subjects (n=21). PAH patients had significantly higher levels of interleukin-1beta, -2, -4, -6, -8, -10, and -12p70 and tumor necrosis factor-alpha compared with healthy control subjects. Kaplan-Meier analysis showed that levels of interleukin-6, 8, 10, and 12p70 predicted survival in patients. For example, 5-year survival with interleukin-6 levels of >9 pg/mL was 30% compared with 63% for patients with levels < or = 9 pg/mL (P=0.008). In this PAH cohort, cytokine levels were superior to traditional markers of prognosis such as 6-minute walk distance and hemodynamics. CONCLUSIONS: This study illustrates dysregulation of a broad range of inflammatory mediators in idiopathic and familial PAH and demonstrates that cytokine levels have a previously unrecognized impact on patient survival. They may prove to be useful biomarkers and provide insight into the contribution of inflammation in PAH.


Assuntos
Biomarcadores/sangue , Citocinas/sangue , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/mortalidade , Inflamação/diagnóstico , Inflamação/mortalidade , Adulto , Idoso , Pressão Sanguínea , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Feminino , Predisposição Genética para Doença , Humanos , Hipertensão Pulmonar/genética , Inflamação/genética , Mediadores da Inflamação/sangue , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Análise de Sobrevida , Resistência Vascular
12.
Circulation ; 119(13): 1747-57, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19307479

RESUMO

BACKGROUND: This large, prospective, multicentric study was performed to analyze the distribution of tricuspid regurgitation velocity (TRV) values during exercise and hypoxia in relatives of patients with idiopathic and familial pulmonary arterial hypertension (PAH) and in healthy control subjects. We tested the hypothesis that relatives of idiopathic/familial PAH patients display an enhanced frequency of hypertensive TRV response to stress and that this response is associated with mutations in the bone morphogenetic protein receptor II (BMPR2) gene. METHODS AND RESULTS: TRV was estimated by Doppler echocardiography during supine bicycle exercise in normoxia and during 120 minutes of normobaric hypoxia (FIO(2)=12%; approximately 4500 m) in 291 relatives of 109 PAH patients and in 191 age-matched control subjects. Mean maximal TRVs were significantly higher in PAH relatives during both exercise and hypoxia. During exercise, 10% of control subjects but 31.6% of relatives (P<0.0001) exceeded the 90% quantile of mean maximal TRV seen in control subjects. Hypoxia revealed hypertensive TRV in 26% of relatives (P=0.0029). Among control subjects, TRV at rest was not related to age, sex, body mass index, systemic blood pressure, smoking status, or heart rate. Within kindreds identified as harboring deleterious mutations of the BMPR2 gene, a hypertensive TRV response occurred significantly more often compared with those without detected mutations. CONCLUSIONS: Pulmonary hypertensive response to exercise and hypoxia in idiopathic/familial PAH relatives appears as a genetic trait with familial clustering, being correlated to but not caused by a BMPR2 mutation. The suitability of this trait to predict manifest PAH development should be addressed in long-term follow-up studies.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Ecocardiografia Doppler , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/genética , Insuficiência da Valva Tricúspide/diagnóstico por imagem , Insuficiência da Valva Tricúspide/genética , Adulto , Pressão Sanguínea/fisiologia , Europa (Continente) , Exercício Físico/fisiologia , Teste de Esforço , Família , Feminino , Frequência Cardíaca/fisiologia , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/genética , Hipóxia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Descanso/fisiologia , Insuficiência da Valva Tricúspide/fisiopatologia , Adulto Jovem
13.
Thorax ; 62(7): 617-22, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17287300

RESUMO

BACKGROUND: Although pulmonary endarterectomy (PEA) is potentially curative in chronic thromboembolic pulmonary hypertension (CTEPH), some patients have distally distributed disease that is not amenable to surgery. The aetiology and characteristics of this patient group are currently not well understood. OBJECTIVES: This study compares the baseline demographic features and outcomes in subjects with distal CTEPH, those with proximal CTEPH and those with idiopathic pulmonary arterial hypertension (IPAH) to determine whether these conditions represent separate entities or whether they exist along the same spectrum of disease. METHODS: The medical history, clinical characteristics, bone morphogenetic protein receptor type II (BMPR2) mutation status and outcomes of 96 subjects with IPAH, 35 with distal CTEPH and 68 with proximal CTEPH referred to a single specialist centre between 1994 and 2005 were reviewed. RESULTS: There were significant differences between the distal CTEPH, proximal CTEPH and IPAH groups in age (55.9 years vs 54.8 years vs 46.2 years, p<0.001), proportion who were male (43% vs 69% vs 29%, p<0.001), previous deep vein thrombosis (28.6% vs 30.9% vs 3.1%, p<0.001), positive BMPR2 status (0% vs 0% vs 15%, p = 0.018), mean pulmonary artery pressure (47.3 mm Hg vs 45.4 mm Hg vs 54.8 mm Hg, p<0.001) and total pulmonary resistance (12.9 WU vs 12.4 WU vs 18.1 WU, p<0.001). Patients with distal CTEPH and those with IPAH were managed similarly and had comparable survival characteristics (1 year survival 77% vs 86%; 3 year survival 53% vs 60%; p = 0.68). CONCLUSIONS: Patients with distal CTEPH share certain demographic features with patients with proximal CTEPH that not only indicate a common aetiology but also help to differentiate them from patients with IPAH. Despite more favourable haemodynamic parameters in those with distal CTEPH, patients in this group had a poor long-term outcome which was similar to that of patients with IPAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Hipertensão Pulmonar/etiologia , Embolia Pulmonar/etiologia , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Hipertensão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Embolia Pulmonar/fisiopatologia , Análise de Sobrevida , Capacidade Vital/fisiologia
14.
Circulation ; 111(5): 607-13, 2005 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-15699281

RESUMO

BACKGROUND: Primary pulmonary arterial hypertension (PAH) is a potentially devastating condition resulting from occlusion of the pulmonary arterioles by the formation of vascular lesions. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type II (BMPR2) have been identified in both familial (FPAH) and idiopathic PAH. Mutant alleles are typically of low penetrance, indicating that other factors are required for the onset of PAH. Previous reports have suggested that the characteristic plexiform lesions in affected lungs are akin to neoplasia, showing monoclonal expansion and microsatellite instability. We hypothesized that in patients with germline mutations, BMPR2 might behave as a classic tumor suppressor gene, with somatic loss of the wild-type allele contributing to disease progression. METHODS AND RESULTS: To test this hypothesis, plexiform and concentric vascular lesions were serially microdissected from lung explant tissue derived from 7 FPAH cases. DNA was analyzed for loss of heterozygosity at BMPR2 and for microsatellite instability (MSI) at 5 loci. MSI was detected in 1 of 37 lesions at a single locus, BAT-26, whereas heterozygosity at BMPR2 was retained at all informative loci. We also describe a FPAH patient carrying biallelic constitutional missense mutations of BMPR2 who manifested disease at a stage and manner similar to heterozygous patients. CONCLUSIONS: Taken together, these data demonstrate that MSI is uncommon in FPAH and suggest that somatic loss of the remaining wild-type BMPR2 allele in heterozygous mutation carriers likely does not play a significant role in modulating the onset or progression of FPAH.


Assuntos
Predisposição Genética para Doença , Hipertensão Pulmonar/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Adulto , Alelos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Análise Mutacional de DNA , Progressão da Doença , Mutação em Linhagem Germinativa , Humanos , Hipertensão Pulmonar/patologia , Perda de Heterozigosidade , Pulmão/cirurgia , Microdissecção , Repetições de Microssatélites , Mutação de Sentido Incorreto
15.
Hum Mol Genet ; 12(24): 3277-86, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14583445

RESUMO

Diverse heterozygous mutations of bone morphogenetic receptor type II (BMPR-II) underlie the inherited form of the vascular disorder primary pulmonary hypertension (PPH). As yet, the molecular detail of how such defects contribute to the pathogenesis of PPH remains unclear. BMPR-II is a member of the transforming growth factor-beta cell signalling superfamily. Ligand binding induces cell surface receptor complex formation and activates a cascade of phosphorylation events of intracellular intermediaries termed Smads, which initiate transcriptional regulation. Some 30% of PPH-causing mutations localize to exon 12, which may be spliced out forming an isoform depleted of the unusually long BMPR-II cytoplasmic tail. To further elucidate the consequences of BMPR2 mutation, we sought to characterize aspects of the cytoplasmic domain function by seeking intracellular binding partners. We now report that Tctex-1, a light chain of the motor complex dynein, interacts with the cytoplasmic domain of BMPR-II and demonstrate that Tctex-1 is phosphorylated by BMPR-II, a function disrupted by PPH disease causing mutations within exon 12. Finally we show that BMPR-II and Tctex-1 co-localize to endothelium and smooth muscle within the media of pulmonary arterioles, key sites of vascular remodelling in PPH. Taken together, these data demonstrate a discrete function for the cytoplasmic domain of BMPR-II and justify further investigation of whether the interaction with and phosphorylation of Tctex-1 contributes to the pathogenesis of PPH.


Assuntos
Dineínas/metabolismo , Hipertensão Pulmonar/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Células HeLa , Humanos , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Pulmão/ultraestrutura , Modelos Biológicos , Fosforilação , Plasmídeos , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/genética , Técnicas do Sistema de Duplo-Híbrido , Região do Complexo-t do Genoma
16.
Hum Mol Genet ; 11(13): 1517-25, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12045205

RESUMO

A wide range of mutations in the type II receptor for bone morphogenetic protein (BMPR-II) have been shown to underlie primary pulmonary hypertension. To determine the mechanism of altered BMPR-II function, we employed transient transfection studies in cell lines and primary cultures of pulmonary vascular smooth muscle cells using green fluorescent protein (GFP)-tagged wild-type and mutant BMPR2 constructs and confocal microscopy to localize receptors. Substitution of cysteine residues in the ligand binding or kinase domain prevented trafficking of BMPR-II to the cell surface, and reduced binding of (125)I-BMP4. In addition, transfection of cysteine-substituted BMPR-II markedly reduced basal and BMP4-stimulated transcriptional activity of a BMP/Smad responsive luciferase reporter gene (3GC2wt-Lux), compared with wild-type BMPR-II, suggesting a dominant-negative effect of these mutants on Smad signalling. In contrast, BMPR-II containing non-cysteine substitutions in the kinase domain were localized to the cell membrane, although these also suppressed the activity of 3GC2wt-Lux. Interestingly, BMPR-II mutations within the cytoplasmic tail trafficked to the cell surface, but retained the ability to activate 3GC2wt-Lux. Transfection of mutant, but not wild-type, constructs into a mouse epithelial cell line (NMuMG cells) led to activation of p38(MAPK) and increased serum-induced proliferation compared with the wild-type receptor, which was partly p38(MAPK)-dependent. We conclude that mutations in BMPR-II heterogeneously inhibit BMP/Smad-mediated signalling by diverse molecular mechanisms. However, all mutants studied demonstrate a gain of function involving upregulation of p38(MAPK)-dependent proproliferative pathways.


Assuntos
Hipertensão Pulmonar/genética , Proteínas Serina-Treonina Quinases/genética , Fator de Crescimento Transformador beta , Animais , Proteína Morfogenética Óssea 2 , Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Células Cultivadas , Genes Reporter , Células HeLa , Humanos , Hipertensão Pulmonar/metabolismo , Ligantes , Camundongos , Proteínas Quinases Ativadas por Mitógeno , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Proteínas Recombinantes/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA