Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 450: 139339, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657343

RESUMO

Oxidative stress is prevalent in Type 2 Diabetes Mellitus (T2DM) and has been associated with high meat consumption. Carob Fruit Extract (CFE) contains phenolic compounds, making it a suitable functional ingredient. Current study aims to evaluate the effect of CFE-enriched meat (CFE-meat) consumption on the antioxidant status of proximal and distal colon, and its relationship with fecal phenolic compounds in late-stage T2DM rats. Three groups of eight rats were studied: 1) D, fed control-meat; 2) ED, fed CFE-meat since the beginning of the study; 3) DE, fed CFE-meat after confirming T2DM. CFE-meat consumption reduces colonic oxidative stress mainly in the proximal section and helps to ameliorate glutathione metabolism and antioxidant score. Difference between ED and DE groups were associated with colon homeostasis and T2DM progression suggesting greater fermentation but lower absorption in the DE group. CFE appears as a promising tool to improve the antioxidant status observed in late-stage T2DM.


Assuntos
Antioxidantes , Colo , Diabetes Mellitus Tipo 2 , Frutas , Estresse Oxidativo , Fenóis , Extratos Vegetais , Animais , Ratos , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Frutas/química , Colo/metabolismo , Colo/efeitos dos fármacos , Fenóis/química , Fenóis/administração & dosagem , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Carne/análise , Humanos , Ratos Wistar , Gomas Vegetais/química , Gomas Vegetais/administração & dosagem , Galactanos , Mananas
2.
Gels ; 10(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38247756

RESUMO

Oleogels (OG) and gelled emulsions (GE) were elaborated with a mixture of olive and chia oils (80:20 ratio) without and with the incorporation of the health-related compound curcumin. These were studied to evaluate the influence of the oil structuring system on the lipid hydrolysis and bioaccessibility of three healthy fatty acids (FA) (palmitic, oleic, and α-linolenic acids) and of curcumin, compared to the oil mixture (bulk oil, BO). The oil structuring system influenced the firmness and texture, and the presence of curcumin significantly altered the color parameters. GE showed higher lipid digestibility, with a greater proportion of absorbable fraction (higher content of free FA and monoacylglycerides) than OG, which behaved similarly to BO. The presence of curcumin affected the degree of lipolysis, reducing lipid digestibility in OG and increasing it in GE. As for FA bioaccessibility, although GE presented higher percentages overall, curcumin significantly increased and decreased FA bioaccessibility in OG and GE, respectively. The oil structuring system also influenced the bioaccessibility of curcumin, which was higher in GE. Therefore, when selecting an oil structuring system, their physicochemical properties, the degree of lipid hydrolysis, and the bioaccessibility of both curcumin and the FA studied should all be considered.

3.
Nutr Hosp ; 39(6): 1397-1407, 2022 Dec 20.
Artigo em Espanhol | MEDLINE | ID: mdl-36327123

RESUMO

Introduction: Previous studies have pointed to a possible relationship between vitamin D deficiency and the severity of the disease promoted by SARS-CoV-2, reducing respiratory and cardiovascular complications caused by a hyperreaction of the immune system known as "cytokine storm". This vitamin exerts multiple functions that depend on the presence and levels of different proteins, such as the vitamin D receptor (VDR) and the vitamin D binding protein (DBP), and the existence of single nucleotide polymorphisms (SNPs) of the genes that encode these proteins. The objective of this review is to assess whether some VDR and GC SNPs are risk factors for the most severe forms of COVID-19 disease and whether they condition the response to vitamin D supplementation. A search was performed in PubMed, Google Scholar and Scielo, finding that genotypes in patients affected by COVID-19, were rarely performed, although some studies find a relationship between different alleles and the severity of the disease. The ApaI polymorphism of the VDR gene stands out, as the minor allele "a" increases the risk of mortality from COVID-19 (OR = 11.828, CI: 2,493-56,104, p = 0.002). Results divergency in the efficacy of vitamin D supplementation suggest the need for a larger number of studies. In conclusion, the study of VDR and GC polymorphisms seems essential to effectively treat vitamin D deficiency and particularly to protect against COVID-19. Well-designed studies are needed to elucidate whether plasma vitamin D levels play a role of casuality or causality.


Introducción: Estudios previos han señalado una posible relación entre la deficiencia de la vitamina D y la severidad de la enfermedad promovida por el SARS-CoV-2, reduciendo las complicaciones respiratorias y cardiovasculares causadas por una respuesta exacerbada del sistema inmune. Esta vitamina ejerce múltiples funciones que dependen de la presencia y niveles de diferentes proteínas, como el receptor de la vitamina D (VDR) y la proteína de unión de la vitamina D (DBP), y de la existencia de polimorfismos de un solo nucleótido (SNP) de los genes que codifican a estas proteínas. El objetivo de esta revisión es evaluar si algunos SNP de VDR y GC son factores de riesgo de las formas más severas de la enfermedad COVID-19 y si condicionan la respuesta a la suplementación con vitamina D. Se realizó una búsqueda en PubMed, Google Scholar y Scielo, encontrándose que son escasos los genotipados en pacientes afectados por COVID-19, aunque algunos trabajos hallan una relación entre diferentes alelos y la severidad de la enfermedad. Destaca el polimorfismo ApaI del gen VDR, el cual alelo menor "a" aumenta el riesgo de mortalidad por COVID-19 (OR = 11,828, CI: 2.493-56.104, p = 0,002). La divergencia de resultados en la eficacia de la suplementación de vitamina D sugiere la necesidad de un mayor número de estudios. En conclusión, el estudio de polimorfismos VDR y GC resulta fundamental para tratar eficazmente la deficiencia de vitamina D y en particular en la protección frente a COVID-19. Se necesitan estudios bien diseñados para dilucidar si los niveles plasmáticos de vitamina D juegan un papel de casualidad o causalidad.


Assuntos
COVID-19 , Receptores de Calcitriol , SARS-CoV-2 , Deficiência de Vitamina D , Proteína de Ligação a Vitamina D , Vitamina D , Humanos , COVID-19/complicações , COVID-19/mortalidade , Genótipo , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Vitamina D/metabolismo , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/genética , Proteína de Ligação a Vitamina D/genética
4.
Mol Nutr Food Res ; 66(24): e2200104, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36213967

RESUMO

SCOPE: Hypercholesterolemia increases the risk of mortality in type 2 diabetes mellitus (T2DM), especially in the late-stage. Consumption of bioactive compounds as functional ingredients would help achieve therapeutic goals for cholesterolemia. Silicon has demonstrated a hypocholesterolemic effect and the ability to reduce fat digestion. However, it is unclear whether silicon exerts such effect in late-stage T2DM (LD) and the intestinal mechanisms involved. METHODS AND RESULTS: Three groups of eight rats were included: early-stage T2DM control (ED), LD, and the LD group treated with silicon (LD-Si) once the rats were diabetic. Morphological alterations of the duodenal mucosa, and levels of markers involve in cholesterol absorption and excretion, beside cholesterolemia, and fecal excretion were assayed. Silicon included as a functional ingredient significantly reduces cholesterolemia in part due to: 1) reducing cholesterol intestinal absorption by decreasing the absorptive area and Acetyl-Coenzyme A acetyltransferase-2 (ACAT2) levels; and 2) increasing cholesterol excretion to the lumen by induction of the liver X receptor (LXR) and consequent increase of adenosine triphosphate-binding cassette transporter (ABCG5/8). CONCLUSIONS: These results provide insight into the intestinal molecular mechanisms by which silicon reduces cholesterolemia and highlights the efficacy of the consumption of silicon-enriched functional foods in late-stage T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Ratos , Animais , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Diabetes Mellitus Tipo 2/tratamento farmacológico , Silício/farmacologia , Lipoproteínas/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Colesterol , Fígado/metabolismo
5.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917044

RESUMO

Type-2 diabetes mellitus (T2DM) is a major systemic disease which involves impaired pancreatic function and currently affects half a billion people worldwide. Diet is considered the cornerstone to reduce incidence and prevalence of this disease. Algae contains fiber, polyphenols, ω-3 PUFAs, and bioactive molecules with potential antidiabetic activity. This review delves into the applications of algae and their components in T2DM, as well as to ascertain the mechanism involved (e.g., glucose absorption, lipids metabolism, antioxidant properties, etc.). PubMed, and Google Scholar databases were used. Papers in which whole alga, algal extracts, or their isolated compounds were studied in in vitro conditions, T2DM experimental models, and humans were selected and discussed. This review also focuses on meat matrices or protein concentrate-based products in which different types of alga were included, aimed to modulate carbohydrate digestion and absorption, blood glucose, gastrointestinal neurohormones secretion, glycosylation products, and insulin resistance. As microbiota dysbiosis in T2DM and metabolic alterations in different organs are related, the review also delves on the effects of several bioactive algal compounds on the colon/microbiota-liver-pancreas-brain axis. As the responses to therapeutic diets vary dramatically among individuals due to genetic components, it seems a priority to identify major gene polymorphisms affecting potential positive effects of algal compounds on T2DM treatment.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Ingredientes de Alimentos/análise , Alimento Funcional/análise , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Microalgas/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Produtos Biológicos/uso terapêutico , Biomarcadores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Disbiose , Metabolismo Energético/efeitos dos fármacos , Predisposição Genética para Doença , Humanos , Hipoglicemiantes/uso terapêutico , Microalgas/classificação , Microbiota
6.
Adv Nutr ; 12(4): 1514-1539, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33578416

RESUMO

High meat consumption has been associated with increased oxidative stress mainly due to the generation of oxidized compounds in the body, such as malondialdehyde, 4-hydroxy-nonenal, oxysterols, or protein carbonyls, which can induce oxidative damage. Meat products are excellent matrices for introducing different bioactive compounds, to obtain functional meat products aimed at minimizing the pro-oxidant effects associated with high meat consumption. Therefore, this review aims to summarize the concept and preparation of healthy and functional meat, which could benefit antioxidant status. Likewise, the key strategies regarding meat production and storage as well as ingredients used (e.g., minerals, polyphenols, fatty acids, walnuts) for developing these functional meats are detailed. Although most effort has been made to reduce the oxidation status of meat, newly emerging approaches also aim to improve the oxidation status of consumers of meat products. Thus, we will delve into the relation between functional meats and their health effects on consumers. In this review, animal trials and intervention studies are discussed, ascertaining the extent of functional meat products' properties (e.g., neutralizing reactive oxygen species formation and increasing the antioxidant response). The effects of functional meat products in the frame of diet-gene interactions are analyzed to 1) discover target subjects that would benefit from their consumption, and 2) understand the molecular mechanisms that ensure precision in the prevention and treatment of diseases, where high oxidative stress takes place. Long-term intervention-controlled studies, testing different types and amounts of functional meat, are also necessary to ascertain their positive impact on degenerative diseases.


Assuntos
Produtos da Carne , Animais , Antioxidantes/farmacologia , Humanos , Malondialdeído , Carne/análise , Estresse Oxidativo
7.
J Nutr Biochem ; 84: 108461, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32739787

RESUMO

The inclusion of functional bioactive compounds of dietary fiber in meat products has been demonstrated to exert a significant impact on human health. Carob fruit extract (CFE) is a dietary fiber rich in proanthocyanidins with known antioxidant, hypolipidemic and hypoglycemic effects. Consumption of CFE-enriched meat (CFE-RM) may provide interesting benefits in late-stage type 2 diabetes mellitus (T2DM). To explore the antidiabetic mechanisms of CFE-RM, we used a model of late-stage T2DM in Wistar rats fed a high-saturated-fat/high-cholesterol diet (Chol-diet) and injected streptozotocin plus nicotinamide (D group). The effects of CFE-RM were tested by incorporating it into the diet as preventive strategy (ED group) or curative treatment (DE group). CFE-RM had a positive effect on glycemia, enhancing hepatic insulin sensitivity and improving pancreatic ß-cell regeneration in both ED and DE groups. Western blotting and immunohistochemistry suggested that CFE-RM increased levels of insulin receptor ß and phosphatidylinositol-3-kinase, as well as the downstream target phospho-Akt (at Ser473). CFE-RM also up-regulated glucose transporter 2, which improves the insulin-mediated glucose uptake by the liver, and promoted phosphorylation of glycogen synthesis kinase-3ßprotein (at ser9), consequently increasing the hepatic glycogen content. In addition, CFE-RM decreased fatty liver by suppressing de novo lipogenesis activation due to down-regulation of liver X receptor-α/ß, sterol regulatory element binding protein-1c and carbohydrate-response element-binding protein transcription factors. Our findings suggest that the consumption of CFE-RM included in the diet as a functional food should be considered as a suitable nutritional strategy to prevent or manage late-stage T2DM.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Fibras na Dieta , Alimento Funcional , Insulina/metabolismo , Lipogênese , Carne , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Fibras na Dieta/uso terapêutico , Fígado/metabolismo , Fígado/patologia , Masculino , Carne/análise , Ratos Wistar
8.
J Nutr ; 147(6): 1104-1112, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28446627

RESUMO

Background: Lipoapoptosis has been identified as a key event in the progression of nonalcoholic fatty liver disease (NAFLD), and hence, antiapoptotic agents have been recommended as a possible effective treatment for nonalcoholic steatohepatitis (NASH). Silicon, included in meat as a functional ingredient, improves lipoprotein profiles and liver antioxidant defenses in aged rats fed a high-saturated fat, high-cholesterol diet (HSHCD). However, to our knowledge, the antiapoptotic effect of this potential functional meat on the liver has never been tested.Objective: This study was designed to evaluate the effect of silicon on NASH development and the potential antiapoptotic properties of silicon in aged rats.Methods: One-year-old male Wistar rats weighing ∼500 g were fed 3 experimental diets containing restructured pork (RP) for 8 wk: 1) a high-saturated fat diet, as an NAFLD control, with 16.9% total fat, 0.14 g cholesterol/kg diet, and 46.8 mg SiO2/kg (control); 2) the HSHCD as a model of NASH, with 16.6% total fat, 16.3 g cholesterol/kg diet, and 46.8 mg SiO2/kg [high-cholesterol diet (Chol-C)]; and 3) the HSHCD with silicon-supplemented RP with amounts of fat and cholesterol identical to those in the Chol-C diet, but with 750 mg SiO2/kg (Chol-Si). Detailed histopathological assessments were performed, and the NAFLD activity score (NAS) was calculated. Liver apoptosis and damage markers were evaluated by Western blotting and immunohistochemical staining.Results: Chol-C rats had a higher mean NAS (7.4) than did control rats (1.9; P < 0.001). The score in Chol-Si rats (5.4) was intermediate and different from that in both other groups (P < 0.05). Several liver apoptosis markers-including hepatocyte terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate (dUTP) nick end labeling, cytosolic cytochrome c, apoptosis-inducing factor, caspases 9 and 3, and the mitochondrial Bcl-2-associated X protein (BAX)-to-B-cell lymphoma 2 (BCL2) ratio-were 9-45% lower in Chol-Si than in Chol-C rats (P < 0.05) and did not differ from values in the control group.Conclusions: Supplemental silicon substantially affects NASH development in aged male Wistar rats fed an HSHCD by partially blocking apoptosis. These results suggest that silicon-enriched RP could be used as an effective nutritional strategy in preventing NASH.


Assuntos
Apoptose/efeitos dos fármacos , Colesterol na Dieta/administração & dosagem , Dieta Hiperlipídica , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Carne Vermelha , Silício/uso terapêutico , Animais , Biomarcadores/metabolismo , Colesterol na Dieta/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos Wistar , Silício/farmacologia , Dióxido de Silício/farmacologia , Dióxido de Silício/uso terapêutico , Suínos , Oligoelementos/farmacologia , Oligoelementos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA