Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674035

RESUMO

In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.


Assuntos
Metaloides , Saccharomyces cerevisiae , Estresse Fisiológico , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Metaloides/metabolismo , Metaloides/toxicidade , Humanos , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Arsênio/toxicidade , Arsênio/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Cells ; 12(3)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36766761

RESUMO

Up-frameshift protein 1 (UPF1) plays the role of a vital controller for transcripts, ready to react in the event of an incorrect translation mechanism. It is well known as one of the key elements involved in mRNA decay pathways and participates in transcript and protein quality control in several different aspects. Firstly, UPF1 specifically degrades premature termination codon (PTC)-containing products in a nonsense-mediated mRNA decay (NMD)-coupled manner. Additionally, UPF1 can potentially act as an E3 ligase and degrade target proteins independently from mRNA decay pathways. Thus, UPF1 protects cells against the accumulation of misfolded polypeptides. However, this multitasking protein may still hide many of its functions and abilities. In this article, we summarize important discoveries in the context of UPF1, its involvement in various cellular pathways, as well as its structural importance and mutational changes related to the emergence of various pathologies and disease states. Even though the state of knowledge about this protein has significantly increased over the years, there are still many intriguing aspects that remain unresolved.


Assuntos
RNA Helicases , Transativadores , Humanos , RNA Helicases/genética , RNA Helicases/metabolismo , Transativadores/genética , Transativadores/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Mutação , Códon sem Sentido/genética
3.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925940

RESUMO

Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast.


Assuntos
Antimônio/toxicidade , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Estresse Oxidativo/genética , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Reparo de DNA por Recombinação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Telômero/metabolismo
5.
J Exp Bot ; 70(1): 285-300, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304441

RESUMO

Members of the cation diffusion facilitator (CDF) family have been identified in all kingdoms of life. They have been divided into three subgroups, namely Zn-CDF, Fe/Zn-CDF, and Mn-CDF, based on their putative specificity to transported metal ions. The plant metal tolerance protein 6 (MTP6) proteins fall into the Fe/Zn-CDF subgroup; however, their function in iron/zinc transport has not yet been confirmed. Here, we characterized the MTP6 protein from cucumber, Cucumis sativus. When expressed in yeast and in protoplasts isolated from Arabidopsis cells, CsMTP6 localized in mitochondria and contributed to the efflux of Fe and Mn from these organelles. Immunolocalization of CsMTP6 in cucumber membranes confirmed this association with mitochondria. Root expression and protein levels of CsMTP6 were significantly up-regulated in conditions of Fe deficiency and excess, but were not affected by Mn availability. These results indicate that MTP6 proteins contribute to the distribution of Fe and Mn between the cytosol and mitochondria of plant cells, and are regulated by Fe to maintain mitochondrial and cytosolic iron homeostasis under varying conditions of Fe availability.


Assuntos
Proteínas de Transporte de Cátions/genética , Cucumis sativus/fisiologia , Ferro/fisiologia , Manganês/fisiologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cucumis sativus/genética , Homeostase , Mitocôndrias/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
6.
Nucleic Acids Res ; 45(11): 6404-6416, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28383696

RESUMO

Accurate chromosome segregation is essential for every living cell as unequal distribution of chromosomes during cell division may result in genome instability that manifests in carcinogenesis and developmental disorders. Irc5 from Saccharomyces cerevisiae is a member of the conserved Snf2 family of ATP-dependent DNA translocases and its function is poorly understood. Here, we identify Irc5 as a novel interactor of the cohesin complex. Irc5 associates with Scc1 cohesin subunit and contributes to cohesin binding to chromatin. Disruption of IRC5 decreases cohesin levels at centromeres and chromosome arms, causing premature sister chromatid separation. Moreover, reduced cohesin occupancy at the rDNA region in cells lacking IRC5 leads to the loss of rDNA repeats. We also show that the translocase activity of Irc5 is required for its function in cohesion pathway. Finally, we demonstrate that in the absence of Irc5 both the level of chromatin-bound Scc2, a member of cohesin loading complex, and physical interaction between Scc1 and Scc2 are reduced. Our results suggest that Irc5 is an auxiliary factor that is involved in cohesin association with chromatin.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Cromossomos Fúngicos/metabolismo , DNA Ribossômico/genética , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Troca de Cromátide Irmã , Coesinas
7.
J Biosci ; 41(4): 601-614, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27966483

RESUMO

We investigated the influence of the quaternary ammonium salt (QAS) called IM (N-(dodecyloxycarboxymethyl)- N,N,N-trimethyl ammonium chloride) on yeast cells of the parental strain and the IM-resistant mutant (EO25 IMR) growth. The phenotype of this mutant was pleiotropic. The IMR mutant exhibited resistance to ethanol, osmotic shock and oxidative stress, as well as increased sensitivity to UV. Moreover, it was noted that mutant EO25 appears to have an increased resistance to clotrimazole, ketoconazole, fluconazole, nystatin and cycloheximide. It also tolerated growth in the presence of crystal violet, DTT and metals (selenium, tin, arsenic). It was shown that the presence of IM decreased ergosterol level in mutant plasma membrane and increased its unsaturation. These results indicate changes in the cell lipid composition. Western blot analysis showed the induction of Pma1 level by IM. RT-PCR revealed an increased PMA1 expression after IM treatment.


Assuntos
Membrana Celular/efeitos dos fármacos , Ergosterol/biossíntese , ATPases Translocadoras de Prótons/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/genética , Cloreto de Amônio/farmacologia , Ergosterol/genética , Etanol/toxicidade , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Mutação , Pressão Osmótica , Estresse Oxidativo/genética , ATPases Translocadoras de Prótons/genética , Compostos de Amônio Quaternário/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 290(25): 15717-15729, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25963145

RESUMO

Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu(+) (Km ∼1 or 0.5 µM, respectively) and similar affinity to Ag(+) (Km ∼2.5 µM). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu(+) transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess.


Assuntos
Adenosina Trifosfatases , Cucumis sativus , Membranas Intracelulares , Proteínas de Membrana Transportadoras , Proteínas de Plantas , Vacúolos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Bases , Cobre/metabolismo , Cucumis sativus/enzimologia , Cucumis sativus/genética , Membranas Intracelulares/enzimologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacúolos/enzimologia , Vacúolos/genética
9.
Plant Cell Environ ; 38(6): 1127-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25210955

RESUMO

P1B-ATPases (heavy metal ATPases, HMAs) constitute a multigenic subfamily of P-ATPases involved in the transport of monovalent and divalent heavy metals in plant cells. Here, we present the organization of genes encoding the HMA family in the cucumber genome and report the function and biochemical properties of two cucumber proteins homologous to the HMA2-4-like plant HMAs. Eight genes encoding putative P1B -ATPases were identified in the cucumber genome. Among them, CsHMA3 was predominantly expressed in roots and up-regulated by Pb, Zn and Cd excess, whereas the CsHMA4 transcript was most abundant in roots and flowers of cucumber plants, and elevated under Pb and Zn excess. Expression of CsHMA3 in Saccharomyces cerevisiae enhanced yeast tolerance to Cd and Pb, whereas CsHMA4 conferred increased resistance of yeast cells to Cd and Zn. Immunostaining with specific antibodies raised against cucumber proteins revealed tonoplast localization of CsHMA3 and plasma membrane localization of CsHMA4 in cucumber root cells. Kinetic studies of CsHMA3 and CsHMA4 in yeast membranes indicated differing heavy metal cation affinities of these two proteins. Altogether, the results suggest an important role of CsHMA3 and CsHMA4 in Cd and Pb detoxification and Zn homeostasis in cucumber cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Cucumis sativus/enzimologia , Metais Pesados/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Bases , Cádmio/metabolismo , Membrana Celular/enzimologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Flores/enzimologia , Genes de Plantas/genética , Homeostase , Chumbo/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/metabolismo , Zinco/metabolismo
10.
Biochim Biophys Acta ; 1838(3): 747-55, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24291645

RESUMO

The yeast transporter Acr3p is a low affinity As(III)/H(+) and Sb(III)/H(+) antiporter located in the plasma membrane. It has been shown for bacterial Acr3 proteins that just a single cysteine residue, which is located in the middle of the fourth transmembrane region and conserved in all members of the Acr3 family, is essential for As(III) transport activity. Here, we report a systematic mutational analysis of all nine cysteine residues present in the Saccharomyces cerevisiae Acr3p. We found that mutagenesis of highly conserved Cys151 resulted in a complete loss of metalloid transport function. In addition, lack of Cys90 and Cys169, which are conserved in eukaryotic members of Acr3 family, impaired Acr3p trafficking to the plasma membrane and greatly reduced As(III) efflux, respectively. Mutagenesis of five other cysteines in Acr3p resulted in moderate reduction of As(III) transport capacities and sorting perturbations. Our data suggest that interaction of As(III) with multiple thiol groups in the yeast Acr3p may facilitate As(III) translocation across the plasma membrane.


Assuntos
Arsenitos/metabolismo , Cisteína/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo
11.
Int J Mol Sci ; 13(3): 3527-3548, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489166

RESUMO

Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antimônio/metabolismo , Arsênio/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Animais , Antimônio/uso terapêutico , Aquagliceroporinas/metabolismo , Arabidopsis/metabolismo , Arsênio/uso terapêutico , Transporte Biológico , Glutationa/metabolismo , Humanos , Leishmania/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fitoquelatinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Xenopus laevis , Peixe-Zebra/metabolismo
12.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 12): 1028-34, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22120740

RESUMO

Human fructose-1,6-bisphosphatase is an allosteric enzyme that is regulated by different ligands. There are only two known isozymes in human tissues: the liver isozyme (the key enzyme of gluconeogenesis), which is regulated by fructose 2,6-bisphosphate, and its muscle counterpart (participating in glycogen synthesis), which is regulated by calcium ions. AMP, which is an allosteric inhibitor of both isozymes, inhibits the muscle isozyme with an I(0.5) that is 35-100 times lower than for the liver isozyme and the reason for this difference remains obscure. In studies aiming at an explanation of the main differences in the regulation of the two isozymes, it has been shown that only one residue, in position 69, regulates the sensitivity towards calcium ions. As a consequence of this finding, an E69Q mutant of the muscle isozyme, which is insensitive to calcium ions while retaining all other kinetic properties resembling the liver isozyme, has been prepared and crystallized. Here, two crystal structures of this mutant enzyme in complex with AMP with and without fructose 6-phosphate (the product of the catalytic reaction) are presented. The AMP binding pattern of the muscle isozyme is quite similar to that of the liver isozyme and the T conformations of the two isozymes are nearly the same.


Assuntos
Frutose-Bifosfatase/química , Músculos/enzimologia , Mutação , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Humanos , Fígado/enzimologia , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Especificidade por Substrato
13.
Postepy Biochem ; 56(4): 400-8, 2010.
Artigo em Polonês | MEDLINE | ID: mdl-21473044

RESUMO

Mechanisms of arsenic uptake and detoxification are present in all studied organisms. These mechanisms are considerably well described in unicellular organisms such as bacterium Escherichia coli and baker's yeast Saccharomyces cerevisiae, still leaving much to be revealed in multicellular organisms. Full identification of arsenic uptake and detoxification is of great importance. This knowledge can be very helpful in improving effectiveness of arsenic-containing drugs used in chemotherapy of parasitoses as well as in treatment of acute promielyocytic leukemia. Increased proficiency of bioremediation of arsenic-contaminated soils can be obtained by using plants hyperaccumulating arsenic. This kind of plants can be engineered by modulating expression levels of genes encoding arsenic transporters. The same technique may be used to decrease levels of accumulated arsenic in crops. The aim of this paper is to review current knowledge about systems of arsenic uptake in every studied organism--from bacteria to human.


Assuntos
Arsênio/farmacocinética , Células Eucarióticas/metabolismo , Células Procarióticas/metabolismo , Animais , Aquaporinas/metabolismo , Transporte Biológico , Recuperação e Remediação Ambiental , Escherichia coli/metabolismo , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Doenças Parasitárias/tratamento farmacológico , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA