Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biol Open ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158383

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder affecting 1:3500 male births and associated with myofiber degeneration, regeneration, and inflammation. Glucocorticoid treatments have been the standard of care due to immunomodulatory/immunosuppressive properties but novel genetic approaches, including exon skipping and gene replacement therapy, are currently being developed. The identification of additional biomarkers to assess DMD-related inflammatory responses and the potential efficacy of these therapeutic approaches are thus of critical importance. The current study utilizes RNA sequencing of skeletal muscle from two mdx mouse models to identify high mobility group box 1 (HMGB1) as a candidate biomarker potentially contributing to DMD-related inflammation. HMGB1 protein content was increased in a human iPSC-derived skeletal myocyte model of DMD and microdystrophin treatment decreased HMGB1 back to control levels. In vivo, HMGB1 protein levels were increased in vehicle treated B10-mdx skeletal muscle compared to B10-WT and significantly decreased in B10-mdx animals treated with adeno-associated virus (AAV)-microdystrophin. However, HMGB1 protein levels were not increased in D2-mdx skeletal muscle compared to D2-WT, demonstrating a strain-specific difference in DMD-related immunopathology.

2.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38413232

RESUMO

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disorder marked by progressive motor neuron degeneration and muscle denervation. A recent transcriptomic study integrating a wide range of human ALS samples revealed that the upregulation of p53, a downstream target of inflammatory stress, is commonly detected in familial and sporadic ALS cases by a mechanism linked to a transactive response DNA-binding protein 43 (TDP-43) dysfunction. In this study, we show that prolonged interferon-gamma (IFNγ) treatment of human induced pluripotent stem cell-derived spinal motor neurons results in a severe cytoplasmic aggregation of TDP-43. TDP-43 dysfunction resulting from either IFNγ exposure or an ALS-associated TDP-43 mutation was associated with the activation of the p53 pathway. This was accompanied by the hyperactivation of neuronal firing, followed by the complete loss of their electrophysiological function. Through a comparative single-cell transcriptome analysis, we have identified significant alterations in ALS-associated genes in motor neurons exposed to IFNγ, implicating their direct involvement in ALS pathology. Interestingly, IFNγ was found to induce significant levels of programmed death-ligand 1 (PD-L1) expression in motor neurons without affecting the levels of any other immune checkpoint proteins. This finding suggests a potential role of excessive PD-L1 expression in ALS development, given that PD-L1 was recently reported to impair neuronal firing ability in mice. Our findings suggest that exposing motor neurons to IFNγ could directly derive ALS pathogenesis, even without the presence of the inherent genetic mutation or functional glia component. Furthermore, this study provides a comprehensive list of potential candidate genes for future immunotherapeutic targets with which to treat sporadic forms of ALS, which account for 90% of all reported cases.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Antígeno B7-H1/metabolismo , Biomarcadores , Proteínas de Ligação a DNA/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Interferon gama/metabolismo , Interferon gama/farmacologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteína Supressora de Tumor p53/metabolismo
3.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352381

RESUMO

Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity or response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse neurons and astrocytes in ex vivo brain slices. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress, G-protein coupled receptor (GPCR)-induced cell signaling, and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aß-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for diseases associated with oxidative stress, such as cancer, neurodegenerative disorders, and cardiovascular diseases.

4.
Exp Cell Res ; 424(2): 113507, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796746

RESUMO

Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Superóxidos/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/patologia , Actinas/genética , Actinas/metabolismo , Mutação , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Front Cell Dev Biol ; 10: 890574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693947

RESUMO

Telomerase activity is essential for the self-renewal and potential of embryonic, induced pluripotent, and cancer stem cells, as well as a few somatic stem cells, such as human urine-derived stem cells (USCs). However, it remains unclear how telomerase activity affects the regeneration potential of somatic stem cells. The objective of this study was to determine the regenerative significance of telomerase activity, particularly to retain cell surface marker expression, multipotent differentiation capability, chromosomal stability, and in vivo tumorigenic transformation, in each clonal population of human primary USCs. In total, 117 USC specimens from 10 healthy male adults (25-57 years of age) were obtained. Polymerase chain reaction amplification of a telomeric repeat was used to detect USCs with positive telomerase activity (USCsTA+). A total of 80 USCsTA+ (70.2%) were identified from 117 USC clones, but they were not detected in the paired normal bladder smooth muscle cell and bone marrow stromal cell specimens. In the 20-40 years age group, approximately 75% of USC clones displayed positive telomerase activity, whereas in the 50 years age group, 59.2% of the USC clones expressed positive telomerase activity. USCsTA+ extended to passage 16, underwent 62.0 ± 4.8 population doublings, produced more cells, and were superior for osteogenic, myogenic, and uroepithelial differentiation compared to USCsTA-. Importantly, USCs displayed normal chromosome and no oncological transformation after being implanted in vivo. Overall, as a safe cell source, telomerase-positive USCs have a robust regenerative potential in cell proliferation and multipotent differentiation capacity.

6.
Acta Neuropathol Commun ; 8(1): 167, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076971

RESUMO

X-linked myotubular myopathy (XLMTM) is a life-threatening skeletal muscle disease caused by mutations in the MTM1 gene. XLMTM fibres display a population of nuclei mispositioned in the centre. In the present study, we aimed to explore whether positioning and overall distribution of nuclei affects cellular organization and contractile function, thereby contributing to muscle weakness in this disease. We also assessed whether gene therapy alters nuclear arrangement and function. We used tissue from human patients and animal models, including XLMTM dogs that had received increasing doses of recombinant AAV8 vector restoring MTM1 expression (rAAV8-cMTM1). We then used single isolated muscle fibres to analyze nuclear organization and contractile function. In addition to the expected mislocalization of nuclei in the centre of muscle fibres, a novel form of nuclear mispositioning was observed: irregular spacing between those located at the fibre periphery, and an overall increased number of nuclei, leading to dramatically smaller and inconsistent myonuclear domains. Nuclear mislocalization was associated with decreases in global nuclear synthetic activity, contractile protein content and intrinsic myofilament force production. A contractile deficit originating at the myofilaments, rather than mechanical interference by centrally positioned nuclei, was supported by experiments in regenerated mouse muscle. Systemic administration of rAAV8-cMTM1 at doses higher than 2.5 × 1013 vg kg-1 allowed a full rescue of all these cellular defects in XLMTM dogs. Altogether, these findings identify previously unrecognized pathological mechanisms in human and animal XLMTM, associated with myonuclear defects and contractile filament function. These defects can be reversed by gene therapy restoring MTM1 expression in dogs with XLMTM.


Assuntos
Terapia Genética , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Miofibrilas/ultraestrutura , Miopatias Congênitas Estruturais/terapia , Proteínas Tirosina Fosfatases não Receptoras/genética , Adolescente , Adulto , Animais , Pré-Escolar , Dependovirus , Modelos Animais de Doenças , Cães , Feminino , Vetores Genéticos , Humanos , Lactente , Masculino , Camundongos , Microscopia Eletrônica , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Miofibrilas/fisiologia , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/fisiopatologia , Fenótipo , Adulto Jovem
7.
Mol Ther ; 28(2): 382-393, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31784415

RESUMO

Multiple clinical trials employing recombinant adeno-associated viral (rAAV) vectors have been initiated for neuromuscular disorders, including Duchenne and limb-girdle muscular dystrophies, spinal muscular atrophy, and recently X-linked myotubular myopathy (XLMTM). Our previous work on a canine model of XLMTM showed that a single rAAV8-cMTM1 systemic infusion corrected structural abnormalities within the muscle and restored contractile function, with affected dogs surviving more than 4 years post injection. This remarkable therapeutic efficacy presents a unique opportunity to identify the downstream molecular drivers of XLMTM pathology and to what extent the whole muscle transcriptome is restored to normal after gene transfer. Herein, RNA-sequencing was used to examine the transcriptomes of the Biceps femoris and Vastus lateralis in a previously described canine cohort that showed dose-dependent clinical improvements after rAAV8-cMTM1 gene transfer. Our analysis confirmed several dysregulated genes previously observed in XLMTM mice but also identified transcripts linked to XLMTM pathology. We demonstrated XLMTM transcriptome remodeling and dose-dependent normalization of gene expression after gene transfer and created metrics to pinpoint potential biomarkers of disease progression and correction.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/genética , Transcriptoma , Animais , Biomarcadores , Modelos Animais de Doenças , Cães , Dosagem de Genes , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transdução Genética
8.
Mol Ther ; 25(4): 839-854, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28237839

RESUMO

X-linked myotubular myopathy (XLMTM) results from MTM1 gene mutations and myotubularin deficiency. Most XLMTM patients develop severe muscle weakness leading to respiratory failure and death, typically within 2 years of age. Our objective was to evaluate the efficacy and safety of systemic gene therapy in the p.N155K canine model of XLMTM by performing a dose escalation study. A recombinant adeno-associated virus serotype 8 (rAAV8) vector expressing canine myotubularin (cMTM1) under the muscle-specific desmin promoter (rAAV8-cMTM1) was administered by simple peripheral venous infusion in XLMTM dogs at 10 weeks of age, when signs of the disease are already present. A comprehensive analysis of survival, limb strength, gait, respiratory function, neurological assessment, histology, vector biodistribution, transgene expression, and immune response was performed over a 9-month study period. Results indicate that systemic gene therapy was well tolerated, prolonged lifespan, and corrected the skeletal musculature throughout the body in a dose-dependent manner, defining an efficacious dose in this large-animal model of the disease. These results support the development of gene therapy clinical trials for XLMTM.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/genética , Animais , Biópsia , Dependovirus/classificação , Modelos Animais de Doenças , Progressão da Doença , Cães , Marcha , Expressão Gênica , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Vetores Genéticos/farmacocinética , Imunidade Celular , Imunidade Humoral , Estimativa de Kaplan-Meier , Força Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/ultraestrutura , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/mortalidade , Miopatias Congênitas Estruturais/terapia , Proteínas Tirosina Fosfatases não Receptoras/genética , Recuperação de Função Fisiológica , Reflexo , Testes de Função Respiratória , Distribuição Tecidual , Transgenes/genética , Transgenes/imunologia , Resultado do Tratamento
9.
J Cardiovasc Pharmacol Ther ; 21(6): 549-562, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26940570

RESUMO

BACKGROUND: Dystrophin-deficient cardiomyopathy is a growing clinical problem without targeted treatments. We investigated whether nicorandil promotes cardioprotection in human dystrophin-deficient induced pluripotent stem cell (iPSC)-derived cardiomyocytes and the muscular dystrophy mdx mouse heart. METHODS AND RESULTS: Dystrophin-deficient iPSC-derived cardiomyocytes had decreased levels of endothelial nitric oxide synthase and neuronal nitric oxide synthase. The dystrophin-deficient cardiomyocytes had increased cell injury and death after 2 hours of stress and recovery. This was associated with increased levels of reactive oxygen species and dissipation of the mitochondrial membrane potential. Nicorandil pretreatment was able to abolish these stress-induced changes through a mechanism that involved the nitric oxide-cyclic guanosine monophosphate pathway and mitochondrial adenosine triphosphate-sensitive potassium channels. The increased reactive oxygen species levels in the dystrophin-deficient cardiomyocytes were associated with diminished expression of select antioxidant genes and increased activity of xanthine oxidase. Furthermore, nicorandil was found to improve the restoration of cardiac function after ischemia and reperfusion in the isolated mdx mouse heart. CONCLUSION: Nicorandil protects against stress-induced cell death in dystrophin-deficient cardiomyocytes and preserves cardiac function in the mdx mouse heart subjected to ischemia and reperfusion injury. This suggests a potential therapeutic role for nicorandil in dystrophin-deficient cardiomyopathy.


Assuntos
Cardiomiopatias/prevenção & controle , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Canais KATP/agonistas , Distrofia Muscular Animal/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Nicorandil/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Canais KATP/metabolismo , Masculino , Camundongos Endogâmicos mdx , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Nicorandil/metabolismo , Doadores de Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Xantina Oxidase/metabolismo
10.
J Tissue Eng Regen Med ; 9(5): 540-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-23147868

RESUMO

This study investigated the differentiation of human amniotic fluid-derived stem cells (hAFSCs) into insulin-producing clusters in vitro. Adenovirally-delivered mouse Pdx1 (Ad-Pdx1) induced human Pdx1 expression in hAFSCs and enhanced the coordinated expression of downstream ß-cell markers. When Ad-Pdx1-transduced hAFSCs were sequentially treated with activin A, bFGF and nicotinamide and the culture plate surface coated with poly-l-ornithine, the expression of islet-associated human mRNAs for Pdx1, Pax6, Ngn3 and insulin was increased. C-peptide ELISA confirmed that Ad-Pdx1-transduced hAFSCs processed and secreted insulin in a manner consistent with that pathway in pancreatic ß-cells. To sustain the ß-cell-like phenotype and investigate the effect of three-dimensional (3D) conformation on the differentiation of hAFSCs, Pdx1-transduced cells were encapsulated in alginate and cultured long-term under serum-free conditions. Over 2 weeks, partially differentiated hAFSC clusters increased in size and increased insulin secretion. Taken together, these data demonstrate that ectopic Pdx1 expression initiates pancreatic differentiation in hAFSCs and that a ß-cell-like phenotype can be augmented by culture conditions that mimic the stromal components and 3D geometry associated with pancreatic islets.


Assuntos
Técnicas de Cultura de Células/métodos , Proteínas de Homeodomínio/metabolismo , Insulina/metabolismo , Células-Tronco/citologia , Transativadores/metabolismo , Adenoviridae/metabolismo , Líquido Amniótico , Animais , Peptídeo C/metabolismo , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Meios de Cultura , Meios de Cultura Livres de Soro/química , Diabetes Mellitus/terapia , Ensaio de Imunoadsorção Enzimática , Matriz Extracelular/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Camundongos
11.
Am J Phys Med Rehabil ; 93(11 Suppl 3): S97-107, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25313664

RESUMO

The development of clinical vectors to correct genetic mutations that cause inherited myopathies and related disorders of skeletal muscle is advancing at an impressive rate. Adeno-associated virus vectors are attractive for clinical use because (1) adeno-associated viruses do not cause human disease and (2) these vectors are able to persist for years. New vectors are now becoming available as gene therapy delivery tools, and recent preclinical experiments have demonstrated the feasibility, safety, and efficacy of gene therapy with adeno-associated virus for long-term correction of muscle pathology and weakness in myotubularin-deficient canine and murine disease models. In this review, recent advances in the application of gene therapies to treat inherited muscle disorders are presented, including Duchenne muscular dystrophy and x-linked myotubular myopathy. Potential areas for therapeutic synergies between rehabilitation medicine and genetics are also discussed.


Assuntos
Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Miopatias Congênitas Estruturais/terapia , Medicina Física e Reabilitação/tendências , Medicina Regenerativa/tendências , Animais , Estudos de Coortes , Terapia Combinada , Modelos Animais de Doenças , Cães , Previsões , Vetores Genéticos , Humanos , Doenças Musculares/diagnóstico , Doenças Musculares/terapia , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/mortalidade , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/mortalidade , Medicina Física e Reabilitação/métodos , Prognóstico , Medicina Regenerativa/métodos , Análise de Sobrevida , Resultado do Tratamento
12.
Am J Phys Med Rehabil ; 93(11 Suppl 3): S155-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122102

RESUMO

Advances in regenerative medicine technologies will lead to dramatic changes in how patients in rehabilitation medicine clinics are treated in the upcoming decades. The multidisciplinary field of regenerative medicine is developing new tools for disease modeling and drug discovery based on induced pluripotent stem cells. This approach capitalizes on the idea of personalized medicine by using the patient's own cells to discover new drugs, increasing the likelihood of a favorable outcome. The search for compounds that can correct disease defects in the culture dish is a conceptual departure from how drug screens were done in the past. This system proposes a closed loop from sample collection from the diseased patient, to in vitro disease model, to drug discovery and Food and Drug Administration approval, to delivering that drug back to the same patient. Here, recent progress in patient-specific induced pluripotent stem cell derivation, directed differentiation toward diseased cell types, and how those cells can be used for high-throughput drug screens are reviewed. Given that restoration of normal function is a driving force in rehabilitation medicine, the authors believe that this drug discovery platform focusing on phenotypic rescue will become a key contributor to therapeutic compounds in regenerative rehabilitation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neuromusculares/reabilitação , Medicina Física e Reabilitação/métodos , Medicina de Precisão/métodos , Medicina Regenerativa/métodos , Animais , Bioengenharia/métodos , Reprogramação Celular , Descoberta de Drogas , Previsões , Humanos , Doenças Neuromusculares/diagnóstico , Medicina Física e Reabilitação/tendências , Medicina de Precisão/tendências , Melhoria de Qualidade , Medicina Regenerativa/tendências , Transplante de Células-Tronco/métodos , Resultado do Tratamento
13.
Stem Cell Res ; 12(2): 467-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24434629

RESUMO

The ability to extract somatic cells from a patient and reprogram them to pluripotency opens up new possibilities for personalized medicine. Induced pluripotent stem cells (iPSCs) have been employed to generate beating cardiomyocytes from a patient's skin or blood cells. Here, iPSC methods were used to generate cardiomyocytes starting from the urine of a patient with Duchenne muscular dystrophy (DMD). Urine was chosen as a starting material because it contains adult stem cells called urine-derived stem cells (USCs). USCs express the canonical reprogramming factors c-myc and klf4, and possess high telomerase activity. Pluripotency of urine-derived iPSC clones was confirmed by immunocytochemistry, RT-PCR and teratoma formation. Urine-derived iPSC clones generated from healthy volunteers and a DMD patient were differentiated into beating cardiomyocytes using a series of small molecules in monolayer culture. Results indicate that cardiomyocytes retain the DMD patient's dystrophin mutation. Physiological assays suggest that dystrophin-deficient cardiomyocytes possess phenotypic differences from normal cardiomyocytes. These results demonstrate the feasibility of generating cardiomyocytes from a urine sample and that urine-derived cardiomyocytes retain characteristic features that might be further exploited for mechanistic studies and drug discovery.


Assuntos
Distrofina/deficiência , Células-Tronco Pluripotentes Induzidas/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/urina , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Adulto , Animais , Estudos de Casos e Controles , Diferenciação Celular/fisiologia , Células Cultivadas , Descoberta de Drogas , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/urina , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Miócitos Cardíacos/citologia , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/urina , Telomerase/urina , Adulto Jovem
14.
Sci Transl Med ; 6(220): 220ra10, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24452262

RESUMO

Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype 8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology, and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged life span to more than 1 year in the absence of toxicity or a humoral or cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small- and large-animal models, and provide proof of concept for future clinical trials in XLMTM patients.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Animais , Dependovirus/genética , Diafragma , Cães , Vetores Genéticos , Genótipo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Debilidade Muscular , Mutação , Miopatias Congênitas Estruturais/mortalidade , Proteínas Tirosina Fosfatases não Receptoras/genética
15.
PLoS One ; 8(4): e62019, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637952

RESUMO

Experiments were conducted to redirect mouse Embryonic Stem (ES) cells from a tumorigenic phenotype to a normal mammary epithelial phenotype in vivo. Mixing LacZ-labeled ES cells with normal mouse mammary epithelial cells at ratios of 1:5 and 1:50 in phosphate buffered saline and immediately inoculating them into epithelium-divested mammary fat pads of immune-compromised mice accomplished this. Our results indicate that tumorigenesis occurs only when normal mammary ductal growth is not achieved in the inoculated fat pads. When normal mammary gland growth occurs, we find ES cells (LacZ+) progeny interspersed with normal mammary cell progeny in the mammary epithelial structures. We demonstrate that these progeny, marked by LacZ expression, differentiate into multiple epithelial subtypes including steroid receptor positive luminal cells and myoepithelial cells indicating that the ES cells are capable of epithelial multipotency in this context but do not form teratomas. In addition, in secondary transplants, ES cell progeny proliferate, contribute apparently normal mammary progeny, maintain their multipotency and do not produce teratomas.


Assuntos
Comunicação Celular , Linhagem da Célula , Transformação Celular Neoplásica/patologia , Microambiente Celular , Células-Tronco Embrionárias/patologia , Células Epiteliais/patologia , Glândulas Mamárias Animais/patologia , Actinas/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Microambiente Celular/efeitos dos fármacos , Microambiente Celular/genética , Quimera , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Receptores de Progesterona/metabolismo , Teratoma/enzimologia , Teratoma/patologia , beta-Galactosidase/metabolismo
16.
Biomaterials ; 34(22): 5488-95, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23583038

RESUMO

Emergent technologies of regenerative medicine have the potential to overcome the limitations of organ transplantation by supplying tissues and organs bioengineered in the laboratory. Pancreas bioengineering requires a scaffold that approximates the biochemical, spatial and vascular relationships of the native extracellular matrix (ECM). We describe the generation of a whole organ, three-dimensional pancreas scaffold using acellular porcine pancreas. Imaging studies confirm that our protocol effectively removes cellular material while preserving ECM proteins and the native vascular tree. The scaffold was seeded with human stem cells and porcine pancreatic islets, demonstrating that the decellularized pancreas can support cellular adhesion and maintenance of cell functions. These findings advance the field of regenerative medicine towards the development of a fully functional, bioengineered pancreas capable of establishing and sustaining euglycemia and may be used for transplantation to cure diabetes mellitus.


Assuntos
Bioengenharia/métodos , Matriz Extracelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Detergentes/farmacologia , Matriz Extracelular/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/ultraestrutura , Perfusão , Sus scrofa
17.
Carcinogenesis ; 34(8): 1929-39, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23619298

RESUMO

Human epithelial cancers are defined by a recurrent distribution of specific chromosomal aneuploidies, a trait less typical for murine cancer models induced by an oncogenic stimulus. After prolonged culture, mouse epithelial cells spontaneously immortalize, transform and become tumorigenic. We assessed genome and transcriptome alterations in cultures derived from bladder and kidney utilizing spectral karyotyping, array CGH, FISH and gene expression profiling. The results show widespread aneuploidy, yet a recurrent and tissue-specific distribution of genomic imbalances, just as in human cancers. Losses of chromosome 4 and gains of chromosome 15 are common and occur early during the transformation process. Global gene expression profiling revealed early and significant transcriptional deregulation. Chromosomal aneuploidy resulted in expression changes of resident genes and consequently in a massive deregulation of the cellular transcriptome. Pathway interrogation of expression changes during the sequential steps of transformation revealed enrichment of genes associated with DNA repair, centrosome regulation, stem cell characteristics and aneuploidy. Genes that modulate the epithelial to mesenchymal transition and genes that define the chromosomal instability phenotype played a dominant role and were changed in a directionality consistent with loss of cell adhesion, invasiveness and proliferation. Comparison with gene expression changes during human bladder and kidney tumorigenesis revealed remarkable overlap with changes observed in the spontaneously transformed murine cultures. Therefore, our novel mouse models faithfully recapitulate the sequence of genomic and transcriptomic events that define human tumorigenesis, hence validating them for both basic and preclinical research.


Assuntos
Carcinogênese/genética , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/genética , Amplificação de Genes , Oncogenes , Aneuploidia , Animais , Carcinogênese/metabolismo , Instabilidade Cromossômica , Aberrações Cromossômicas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Rim/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cariotipagem Espectral/métodos , Transcrição Gênica , Transcriptoma , Bexiga Urinária/citologia
18.
Cells Tissues Organs ; 197(4): 269-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23306211

RESUMO

Insulin therapy for type 1 diabetes does not prevent serious long-term complications including vascular disease, neuropathy, retinopathy and renal failure. Stem cells, including amniotic fluid-derived stem (AFS) cells - highly expansive, multipotent and nontumorigenic cells - could serve as an appropriate stem cell source for ß-cell differentiation. In the current study we tested whether nonhuman primate (nhp)AFS cells ectopically expressing key pancreatic transcription factors were capable of differentiating into a ß-cell-like cell phenotype in vitro. nhpAFS cells were obtained from Cynomolgus monkey amniotic fluid by immunomagnetic selection for a CD117 (c-kit)-positive population. RT-PCR for endodermal and pancreatic lineage-specific markers was performed on AFS cells after adenovirally transduced expression of PDX1, NGN3 and MAFA. Expression of MAFA was sufficient to induce insulin mRNA expression in nhpAFS cell lines, whereas a combination of MAFA, PDX1 and NGN3 further induced insulin expression, and also induced the expression of other important endocrine cell genes such as glucagon, NEUROD1, NKX2.2, ISL1 and PCSK2. Higher induction of these and other important pancreatic genes was achieved by growing the triply infected AFS cells in media supplemented with a combination of B27, betacellulin and nicotinamide, as well as culturing the cells on extracellular matrix-coated plates. The expression of pancreatic genes such as NEUROD1, glucagon and insulin progressively decreased with the decline of adenovirally expressed PDX1, NGN3 and MAFA. Together, these experiments suggest that forced expression of pancreatic transcription factors in primate AFS cells induces them towards the pancreatic lineage.


Assuntos
Líquido Amniótico/fisiologia , Pâncreas/fisiologia , Células-Tronco/fisiologia , Líquido Amniótico/citologia , Líquido Amniótico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Expressão Gênica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Macaca fascicularis , Fatores de Transcrição Maf Maior/biossíntese , Fatores de Transcrição Maf Maior/genética , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares , Pâncreas/citologia , Pâncreas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Transativadores/biossíntese , Transativadores/genética , Fatores de Transcrição
19.
Proc Natl Acad Sci U S A ; 105(39): 14891-6, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18809919

RESUMO

A fundamental issue in stem cell biology is whether adult somatic stem cells are capable of accessing alternate tissue sites and continue functioning as stem cells in the new microenvironment. To address this issue relative to neurogenic stem cells in the mouse mammary gland microenvironment, we mixed wild-type mammary epithelial cells (MECs) with bona fide neural stem cells (NSCs) isolated from WAP-Cre/Rosa26R mice and inoculated them into cleared fat pads of immunocompromised females. Hosts were bred 6-8 weeks later and examined postinvolution. This allowed for mammary tissue growth, transient activation of the WAP-Cre gene, recombination, and constitutive expression of LacZ. The NSCs and their progeny contributed to mammary epithelial growth during ductal morphogenesis, and the Rosa26-LacZ reporter gene was activated by WAP-Cre expression during pregnancy. Some NSC-derived LacZ(+) cells expressed mammary-specific functions, including milk protein synthesis, whereas others adopted myoepithelial cell fates. Thus, NSCs and their progeny enter mammary epithelium-specific niches and adopt the function of similarly endowed mammary cells. This result supports the conclusion that tissue-specific signals emanating from the stroma and from the differentiated somatic cells of the mouse mammary gland can redirect the NSCs to produce cellular progeny committed to MEC fates.


Assuntos
Diferenciação Celular , Glândulas Mamárias Animais/crescimento & desenvolvimento , Células-Tronco Multipotentes/citologia , Neurônios/citologia , Animais , Ciclo Celular , Diferenciação Celular/genética , Células Epiteliais/citologia , Feminino , Genes Reporter , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Transgênicos , Proteínas do Leite/genética , Morfogênese , Gravidez , Proteínas/genética , RNA não Traduzido , Transplante de Células-Tronco , beta-Galactosidase/genética
20.
J Cell Physiol ; 216(3): 824-34, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18425773

RESUMO

Netrin-1 has been shown to regulate the function of the EGF-like protein Cripto-1 (Cr-1) and affect mammary gland development. Since Cr-1 is a target gene of Nanog and Oct4, we investigated the relationship between Netrin-1 and Cr-1, Nanog and Oct4 during different stages of development in the mouse mammary gland. Results from histological analysis show that exogenous Netrin-1 was able to induce formation of alveolar-like structures within the mammary gland terminal end buds of virgin transgenic Cripto-1 mice and enhance mammary gland alveologenesis in early pregnant FVB/N mice. Results from immunostaining and Western blot analysis show that Netrin-1, Nanog and Oct4 are expressed in the mouse embryonic mammary anlage epithelium while Cripto-1 is predominantly expressed outside this structure in the surrounding mesenchyme. We find that in lactating mammary glands of postnatal FVB/N mice, Netrin-1 expression is highest while Cripto-1 and Nanog levels are lowest indicating that Netrin-1 may perform a role in the mammary gland during lactation. HC-11 mouse mammary epithelial cells stimulated with lactogenic hormones and exogenous soluble Netrin-1 showed increased beta-casein expression as compared to control thus supporting the potential role for Netrin-1 during functional differentiation of mouse mammary epithelial cells. Finally, mouse ES cells treated with exogenous soluble Netrin-1 showed reduced levels of Nanog and Cripto-1 and higher levels of beta-III tubulin during differentiation. These results suggest that Netrin-1 may facilitate functional differentiation of mammary epithelial cells and possibly affect the expression of Nanog and/or Cripto-1 in multipotent cells that may reside in the mammary gland.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Proteínas de Homeodomínio/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glicoproteínas de Membrana/metabolismo , Morfogênese/fisiologia , Proteínas de Neoplasias/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Caseínas/metabolismo , Diferenciação Celular , Células Cultivadas , Dexametasona/metabolismo , Células-Tronco Embrionárias/citologia , Fator de Crescimento Epidérmico/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glucocorticoides/metabolismo , Proteínas de Homeodomínio/genética , Insulina/metabolismo , Lactação , Masculino , Glândulas Mamárias Animais/anatomia & histologia , Glândulas Mamárias Animais/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteína Homeobox Nanog , Proteínas de Neoplasias/genética , Fatores de Crescimento Neural/genética , Netrina-1 , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Gravidez , Prolactina/metabolismo , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA