Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904138

RESUMO

Exposure to ionizing radiation is ubiquitous, and it is well established that moderate and high doses cause ill-health and can be lethal. The health effects of low doses or low dose-rates of ionizing radiation are not so clear. This paper describes a project which sets out to summarize, as a restatement, the natural science evidence base concerning the human health effects of exposure to low-level ionizing radiation. A novel feature, compared to other reviews, is that a series of statements are listed and categorized according to the nature and strength of the evidence that underpins them. The purpose of this restatement is to provide a concise entrée into this vibrant field, pointing the interested reader deeper into the literature when more detail is needed. It is not our purpose to reach conclusions on whether the legal limits on radiation exposures are too high, too low or just right. Our aim is to provide an introduction so that non-specialist individuals in this area (be they policy-makers, disputers of policy, health professionals or students) have a straightforward place to start. The summary restatement of the evidence and an extensively annotated bibliography are provided as appendices in the electronic supplementary material.


Assuntos
Exposição à Radiação/efeitos adversos , Radiação Ionizante , Humanos
2.
Oncogene ; 23(39): 6677-83, 2004 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15247901

RESUMO

Gene microarray technology is highly effective in screening for differential gene expression and has hence become a popular tool in the molecular investigation of cancer. When applied to tumours, molecular characteristics may be correlated with clinical features such as response to chemotherapy. Exploitation of the huge amount of data generated by microarrays is difficult, however, and constitutes a major challenge in the advancement of this methodology. Independent component analysis (ICA), a modern statistical method, allows us to better understand data in such complex and noisy measurement environments. The technique has the potential to significantly increase the quality of the resulting data and improve the biological validity of subsequent analysis. We performed microarray experiments on 31 postmenopausal endometrial biopsies, comprising 11 benign and 20 malignant samples. We compared ICA to the established methods of principal component analysis (PCA), Cyber-T, and SAM. We show that ICA generated patterns that clearly characterized the malignant samples studied, in contrast to PCA. Moreover, ICA improved the biological validity of the genes identified as differentially expressed in endometrial carcinoma, compared to those found by Cyber-T and SAM. In particular, several genes involved in lipid metabolism that are differentially expressed in endometrial carcinoma were only found using this method. This report highlights the potential of ICA in the analysis of microarray data.


Assuntos
Neoplasias do Endométrio/genética , Análise de Sequência com Séries de Oligonucleotídeos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos
3.
Bioinformatics ; 18(12): 1617-24, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12490446

RESUMO

MOTIVATION: A number of algorithms and analytical models have been employed to reduce the multidimensional complexity of DNA array data and attempt to extract some meaningful interpretation of the results. These include clustering, principal components analysis, self-organizing maps, and support vector machine analysis. Each method assumes an implicit model for the data, many of which separate genes into distinct clusters defined by similar expression profiles in the samples tested. A point of concern is that many genes may be involved in a number of distinct behaviours, and should therefore be modelled to fit into as many separate clusters as detected in the multidimensional gene expression space. The analysis of gene expression data using a decomposition model that is independent of the observer involved would be highly beneficial to improve standard and reproducible classification of clinical and research samples. RESULTS: We present a variational independent component analysis (ICA) method for reducing high dimensional DNA array data to a smaller set of latent variables, each associated with a gene signature. We present the results of applying the method to data from an ovarian cancer study, revealing a number of tissue type-specific and tissue type-independent gene signatures present in varying amounts among the samples surveyed. The observer independent results of such molecular analysis of biological samples could help identify patients who would benefit from different treatment strategies. We further explore the application of the model to similar high-throughput studies.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Expressão Gênica/genética , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise por Conglomerados , Cistadenoma/classificação , Cistadenoma/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Modelos Estatísticos , Variações Dependentes do Observador , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/genética , Controle de Qualidade , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA