Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 1235, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075211

RESUMO

M-CSF receptor signaling supports the development and survival of mononuclear phagocytes and is thought to play a role in post burn anemia by promoting myeloid lineage bias. We found M-CSF secretion was increased in burn patients and a murine model of post burn ACI, so we neutralized M-CSF in ACI mice to determine if erythropoiesis was improved. Instead, M-CSF blockade further impaired erythropoiesis and erythroid cells access to iron. M-CSF blockade enhanced inflammatory cytokine secretion, further increased systemic neutrophil counts, and led to tissue iron sequestration that was dependent, in part, on augmented IL-6 secretion which induced hepcidin. Deleterious effects of post burn M-CSF blockade were associated with arrest of an iron recycling gene expression signature in the liver and spleen that included Spi-C transcription factor and heme oxygenase-1, which promote heme metabolism and confer a non-inflammatory tone in macrophages. Hepatic induction of these factors in ACI mice was consistent with a recovery of ferroportin gene expression and reflected an M-CSF dependent expansion and differentiation of Spi-C+ monocytes into Kupffer cells. Together, this data indicates M-CSF secretion supports a homeostatic iron recycling program that plays a key role in the maintenance of erythroid cells access to iron following burn injury.


Assuntos
Anemia/etiologia , Queimaduras/metabolismo , Células Eritroides/metabolismo , Ferro/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Animais , Células da Medula Óssea/metabolismo , Queimaduras/complicações , Estado Terminal , Eritropoese , Feminino , Homeostase , Humanos , Interleucina-6/metabolismo , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Baço/imunologia
2.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G423-30, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27390324

RESUMO

Divalent metal-ion transporter-1 (DMT1), the principal mechanism by which nonheme iron is taken up at the intestinal brush border, is energized by the H(+)-electrochemical potential gradient. The provenance of the H(+) gradient in vivo is unknown, so we have explored a role for brush-border Na(+)/H(+) exchanger (NHE) isoforms by examining iron homeostasis and intestinal iron handling in mice lacking NHE2 or NHE3. We observed modestly depleted liver iron stores in NHE2-null (NHE2(-/-)) mice stressed on a low-iron diet but no change in hematological or blood iron variables or the expression of genes associated with iron metabolism compared with wild-type mice. Ablation of NHE3 strongly depleted liver iron stores, regardless of diet. We observed decreases in blood iron variables but no overt anemia in NHE3-null (NHE3(-/-)) mice on a low-iron diet. Intestinal expression of DMT1, the apical surface ferrireductase cytochrome b reductase-1, and the basolateral iron exporter ferroportin was upregulated in NHE3(-/-) mice, and expression of liver Hamp1 (hepcidin) was suppressed compared with wild-type mice. Absorption of (59)Fe from an oral dose was substantially impaired in NHE3(-/-) compared with wild-type mice. Our data point to an important role for NHE3 in generating the H(+) gradient that drives DMT1-mediated iron uptake at the intestinal brush border.


Assuntos
Regulação da Expressão Gênica/fisiologia , Ferro/metabolismo , Microvilosidades/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Transporte Biológico , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Oócitos , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Desequilíbrio Hidroeletrolítico , Xenopus
3.
Am J Physiol Gastrointest Liver Physiol ; 309(8): G635-47, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26294671

RESUMO

Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e., DMT1(int/int)). DMT1(int/int) mice exhibited a profound hypochromic-microcytic anemia, splenomegaly, and cardiomegaly. That the anemia was due to iron deficiency was demonstrated by the following observations in DMT1(int/int) mice: 1) blood iron and tissue nonheme-iron stores were depleted; 2) mRNA expression of liver hepcidin (Hamp1) was depressed; and 3) intraperitoneal iron injection corrected the anemia, and reversed the changes in blood iron, nonheme-iron stores, and hepcidin expression levels. We observed decreased total iron content in multiple tissues from DMT1(int/int) mice compared with DMT1(+/+) mice but no meaningful change in copper, manganese, or zinc. DMT1(int/int) mice absorbed (64)Cu and (54)Mn from an intragastric dose to the same extent as did DMT1(+/+) mice but the absorption of (59)Fe was virtually abolished in DMT1(int/int) mice. This study reveals a critical function for DMT1 in intestinal nonheme-iron absorption for normal growth and development. Further, this work demonstrates that intestinal DMT1 is not required for the intestinal transport of copper, manganese, or zinc.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Absorção Intestinal/fisiologia , Ferro/metabolismo , Manganês/metabolismo , Anemia Hipocrômica/genética , Anemia Hipocrômica/patologia , Animais , Proteínas de Transporte de Cátions/genética , Transportador de Cobre 1 , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Camundongos , Camundongos Knockout , Zinco/metabolismo
4.
Am J Physiol Cell Physiol ; 306(5): C450-9, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24304836

RESUMO

Iron homeostasis is achieved by regulating the intestinal absorption of the metal and its recycling by macrophages. Iron export from enterocytes or macrophages to blood plasma is thought to be mediated by ferroportin under the control of hepcidin. Although ferroportin was identified over a decade ago, little is understood about how it works. We expressed in Xenopus oocytes a human ferroportin-enhanced green fluorescent protein fusion protein and observed using confocal microscopy its exclusive plasma-membrane localization. As a first step in its characterization, we established an assay to detect functional expression of ferroportin by microinjecting oocytes with (55)Fe and measuring efflux. Ferroportin expression increased the first-order rate constants describing (55)Fe efflux up to 300-fold over control. Ferroportin-mediated (55)Fe efflux was saturable, temperature-dependent (activation energy, Ea ≈ 17 kcal/mol), maximal at extracellular pH ≈ 7.5, and inactivated at extracellular pH < 6.0. We estimated that ferroportin reacts with iron at its intracellular aspect with apparent affinity constant < 10(-7) M. Ferroportin expression also stimulated efflux of (65)Zn and (57)Co but not of (64)Cu, (109)Cd, or (54)Mn. Hepcidin treatment of oocytes inhibited efflux of (55)Fe, (65)Zn, and (57)Co. Whereas hepcidin administration in mice resulted in a marked hypoferremia within 4 h, we observed no effect on serum zinc levels in those same animals. We conclude that ferroportin is an iron-preferring cellular metal-efflux transporter with a narrow substrate profile that includes cobalt and zinc. Whereas hepcidin strongly regulated serum iron levels in the mouse, we found no evidence that ferroportin plays an important role in zinc homeostasis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Cobalto/metabolismo , Ferro/metabolismo , Zinco/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hepcidinas/administração & dosagem , Hepcidinas/metabolismo , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Ferro/sangue , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , Xenopus laevis , Zinco/sangue
5.
J Biol Chem ; 287(41): 34032-43, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22898811

RESUMO

ZIP8 (SLC39A8) belongs to the ZIP family of metal-ion transporters. Among the ZIP proteins, ZIP8 is most closely related to ZIP14, which can transport iron, zinc, manganese, and cadmium. Here we investigated the iron transport ability of ZIP8, its subcellular localization, pH dependence, and regulation by iron. Transfection of HEK 293T cells with ZIP8 cDNA enhanced the uptake of (59)Fe and (65)Zn by 200 and 40%, respectively, compared with controls. Excess iron inhibited the uptake of zinc and vice versa. In RNA-injected Xenopus oocytes, ZIP8-mediated (55)Fe(2+) transport was saturable (K(0.5) of ∼0.7 µm) and inhibited by zinc. ZIP8 also mediated the uptake of (109)Cd(2+), (57)Co(2+), (65)Zn(2+) > (54)Mn(2+), but not (64)Cu (I or II). By using immunofluorescence analysis, we found that ZIP8 expressed in HEK 293T cells localized to the plasma membrane and partially in early endosomes. Iron loading increased total and cell-surface levels of ZIP8 in H4IIE rat hepatoma cells. We also determined by using site-directed mutagenesis that asparagine residues 40, 88, and 96 of rat ZIP8 are glycosylated and that N-glycosylation is not required for iron or zinc transport. Analysis of 20 different human tissues revealed abundant ZIP8 expression in lung and placenta and showed that its expression profile differs markedly from ZIP14, suggesting nonredundant functions. Suppression of endogenous ZIP8 expression in BeWo cells, a placental cell line, reduced iron uptake by ∼40%, suggesting that ZIP8 participates in placental iron transport. Collectively, these data identify ZIP8 as an iron transport protein that may function in iron metabolism.


Assuntos
Proteínas de Transporte de Cátions/biossíntese , Membrana Celular/metabolismo , Ferro/metabolismo , Regulação para Cima/fisiologia , Animais , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Células HEK293 , Humanos , Transporte de Íons/fisiologia , Oócitos , Especificidade de Órgãos/fisiologia , Ratos , Xenopus laevis
6.
Am J Physiol Cell Physiol ; 301(4): C862-71, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21653899

RESUMO

Recent studies have shown that overexpression of the transmembrane protein Zrt- and Irt-like protein 14 (Zip14) stimulates the cellular uptake of zinc and nontransferrin-bound iron (NTBI). Here, we directly tested the hypothesis that Zip14 transports free zinc, iron, and other metal ions by using the Xenopus laevis oocyte heterologous expression system, and use of this approach also allowed us to characterize the functional properties of Zip14. Expression of mouse Zip14 in RNA-injected oocytes stimulated the uptake of (55)Fe in the presence of l-ascorbate but not nitrilotriacetic acid, indicating that Zip14 is an iron transporter specific for ferrous ion (Fe(2+)) over ferric ion (Fe(3+)). Zip14-mediated (55)Fe(2+) uptake was saturable (K(0.5) ≈ 2 µM), temperature-dependent (apparent activation energy, E(a) = 15 kcal/mol), pH-sensitive, Ca(2+)-dependent, and inhibited by Co(2+), Mn(2+), and Zn(2+). HCO(3)(-) stimulated (55)Fe(2+) transport. These properties are in close agreement with those of NTBI uptake in the perfused rat liver and in isolated hepatocytes reported in the literature. Zip14 also mediated the uptake of (109)Cd(2+), (54)Mn(2+), and (65)Zn(2+) but not (64)Cu (I or II). (65)Zn(2+) uptake also was saturable (K(0.5) ≈ 2 µM) but, notably, the metal-ion inhibition profile and Ca(2+) dependence of Zn(2+) transport differed from those of Fe(2+) transport, and we propose a model to account for these observations. Our data reveal that Zip14 is a complex, broad-scope metal-ion transporter. Whereas zinc appears to be a preferred substrate under normal conditions, we found that Zip14 is capable of mediating cellular uptake of NTBI characteristic of iron-overload conditions.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Zinco/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Oócitos , Isoformas de Proteínas , Ratos , Xenopus
8.
Am J Physiol Cell Physiol ; 294(2): C451-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18094143

RESUMO

Vitamin C (L-ascorbic acid) is an essential micronutrient that serves as an antioxidant and as a cofactor in many enzymatic reactions. Intestinal absorption and renal reabsorption of the vitamin is mediated by the epithelial apical L-ascorbic acid cotransporter SVCT1 (SLC23A1). We explored the molecular mechanisms of SVCT1-mediated L-ascorbic acid transport using radiotracer and voltage-clamp techniques in RNA-injected Xenopus oocytes. L-ascorbic acid transport was saturable (K(0.5) approximately 70 microM), temperature dependent (Q(10) approximately 5), and energized by the Na(+) electrochemical potential gradient. We obtained a Na(+)-L-ascorbic acid coupling ratio of 2:1 from simultaneous measurement of currents and fluxes. L-ascorbic acid and Na(+) saturation kinetics as a function of cosubstrate concentrations revealed a simultaneous transport mechanism in which binding is ordered Na(+), L-ascorbic acid, Na(+). In the absence of L-ascorbic acid, SVCT1 mediated pre-steady-state currents that decayed with time constants 3-15 ms. Transients were described by single Boltzmann distributions. At 100 mM Na(+), maximal charge translocation (Q(max)) was approximately 25 nC, around a midpoint (V(0.5)) at -9 mV, and with apparent valence approximately -1. Q(max) was conserved upon progressive removal of Na(+), whereas V(0.5) shifted to more hyperpolarized potentials. Model simulation predicted that the pre-steady-state current predominantly results from an ion-well effect on binding of the first Na(+) partway within the membrane electric field. We present a transport model for SVCT1 that will provide a framework for investigating the impact of specific mutations and polymorphisms in SLC23A1 and help us better understand the contribution of SVCT1 to vitamin C metabolism in health and disease.


Assuntos
Ácido Ascórbico/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Modelos Biológicos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Animais , Transporte Biológico/fisiologia , Transporte Biológico Ativo/genética , Campos Eletromagnéticos , Feminino , Humanos , Cinética , Potenciais da Membrana/genética , Oócitos , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Técnicas de Patch-Clamp , Polimorfismo Genético/genética , Sódio/metabolismo , Transportadores de Sódio Acoplados à Vitamina C , Simportadores/genética , Transfecção , Xenopus
9.
Am J Physiol Gastrointest Liver Physiol ; 289(6): G981-6, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16286504

RESUMO

How does iron enter enterocytes? Ablating SLC11A2, the gene for the divalent metal ion transporter DMT1, supports evidence from the Belgrade rat and mk mouse models establishing DMT1 as the primary mechanism serving apical uptake of nonheme iron. DMT1 harnesses the energy from the proton electrochemical potential gradient to drive active transport of Fe(2+) (and perhaps Mn(2+) and other metal ions) into enterocytes. Fe(III) must first be reduced by ascorbic acid and surface ferrireductases. Among these is duodenal cytochrome B (DcytB), but lack of an obvious phenotype in DcytB (Cybrd1) knockout mice suggests ferrireductase redundancy. Our understanding of heme absorption has lagged, but the time is ripe for gains.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Enterócitos/metabolismo , Absorção Intestinal , Proteínas de Ligação ao Ferro/metabolismo , Ferro/farmacocinética , Animais , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Heme/metabolismo , Proteínas de Ligação ao Ferro/genética
10.
Pflugers Arch ; 447(5): 784-95, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12845534

RESUMO

The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.


Assuntos
Sistema A de Transporte de Aminoácidos/fisiologia , Aminoácidos Neutros/metabolismo , Sódio/metabolismo , Sequência de Aminoácidos , Sistema A de Transporte de Aminoácidos/química , Sistema A de Transporte de Aminoácidos/genética , Animais , Transporte Biológico/fisiologia , Humanos , Dados de Sequência Molecular , Família Multigênica/fisiologia
11.
J Biol Chem ; 278(26): 23720-30, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12684517

RESUMO

Glutamine, the preferred precursor for neurotransmitter glutamate and GABA, is likely to be the principal substrate for the neuronal System A transporter SNAT1 in vivo. We explored the functional properties of SNAT1 (the product of the rat Slc38a1 gene) by measuring radiotracer uptake and currents associated with SNAT1 expression in Xenopus oocytes and determined the neuronal-phenotypic and cellular distribution of SNAT1 by confocal laser-scanning microscopy alongside other markers. We found that SNAT1 mediates transport of small, neutral, aliphatic amino acids including glutamine (K0.5 approximately 0.3 mm), alanine, and the System A-specific analogue 2-(methylamino)isobutyrate. Amino acid transport is driven by the Na+ electrochemical gradient. The voltage-dependent binding of Na+ precedes that of the amino acid in a simultaneous transport mechanism. Li+ (but not H+) can substitute for Na+ but results in reduced Vmax. In the absence of amino acid, SNAT1 mediates Na+-dependent presteady-state currents (Qmax approximately 9 nC) and a nonsaturable cation leak with selectivity Na+, Li+ >> H+, K+. Simultaneous flux and current measurements indicate coupling stoichiometry of 1 Na+ per 1 amino acid. SNAT1 protein was detected in somata and proximal dendrites but not nerve terminals of glutamatergic and GABAergic neurons throughout the adult CNS. We did not detect SNAT1 expression in astrocytes but detected its expression on the luminal membranes of the ependyma. The functional properties and cellular distribution of SNAT1 support a primary role for SNAT1 in glutamine transport serving the glutamate/GABA-glutamine cycle in central neurons. Localization of SNAT1 to certain dopaminergic neurons of the substantia nigra and cholinergic motoneurons suggests that SNAT1 may play additional specialized roles, providing metabolic fuel (via alpha-ketoglutarate) or precursors (cysteine, glycine) for glutathione synthesis.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Sistema Nervoso Central/citologia , Neurônios/química , Sistema A de Transporte de Aminoácidos/fisiologia , Aminoácidos Neutros/metabolismo , Animais , Cátions Monovalentes , Sistema Nervoso Central/química , DNA Complementar , Glutamina/metabolismo , Cinética , Microinjeções , Microscopia de Fluorescência , Oócitos , Técnicas de Patch-Clamp , Ratos , Distribuição Tecidual , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA