Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Acta Neuropathol Commun ; 11(1): 200, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111057

RESUMO

TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma/Translocated in Sarcoma (FUS) are ribonucleoproteins associated with pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Under physiological conditions, TDP-43 and FUS are predominantly localized in the nucleus, where they participate in transcriptional regulation, RNA splicing and metabolism. In disease, however, they are typically mislocalized to the cytoplasm where they form aggregated inclusions. A number of shared cellular pathways have been identified that contribute to TDP-43 and FUS toxicity in neurodegeneration. In the present study, we report a novel pathogenic mechanism shared by these two proteins. We found that pathological FUS co-aggregates with a ribosomal protein, the Receptor for Activated C-Kinase 1 (RACK1), in the cytoplasm of spinal cord motor neurons of ALS, as previously reported for pathological TDP-43. In HEK293T cells transiently transfected with TDP-43 or FUS mutant lacking a functional nuclear localization signal (NLS; TDP-43ΔNLS and FUSΔNLS), cytoplasmic TDP-43 and FUS induced co-aggregation with endogenous RACK1. These co-aggregates sequestered the translational machinery through interaction with the polyribosome, accompanied by a significant reduction of global protein translation. RACK1 knockdown decreased cytoplasmic aggregation of TDP-43ΔNLS or FUSΔNLS and alleviated associated global translational suppression. Surprisingly, RACK1 knockdown also led to partial nuclear localization of TDP-43ΔNLS and FUSΔNLS in some transfected cells, despite the absence of NLS. In vivo, RACK1 knockdown alleviated retinal neuronal degeneration in transgenic Drosophila melanogaster expressing hTDP-43WT or hTDP-43Q331K and improved motor function of hTDP-43WT flies, with no observed adverse effects on neuronal health in control knockdown flies. In conclusion, our results revealed a novel shared mechanism of pathogenesis for misfolded aggregates of TDP-43 and FUS mediated by interference with protein translation in a RACK1-dependent manner. We provide proof-of-concept evidence for targeting RACK1 as a potential therapeutic approach for TDP-43 or FUS proteinopathy associated with ALS and FTLD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Sarcoma , Animais , Humanos , Esclerose Lateral Amiotrófica/patologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Neurônios Motores/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/patologia , Biossíntese de Proteínas , Sarcoma/metabolismo , Sarcoma/patologia , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Proteínas de Neoplasias/genética
2.
Acta Neuropathol ; 145(2): 159-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512061

RESUMO

An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Doença de Alzheimer/patologia , Demência Frontotemporal/patologia , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética
3.
Cureus ; 14(8): e28301, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36158354

RESUMO

Marginal zone B-cell lymphoma (MZBCL) of mucosa-associated lymphoid tissue (MALT) type, which is primary to the central nervous system (CNS), is a rare lesion, with those originating within the parenchyma even more so. We present the case of a 64-year-old male with weakness in the left hand and focal motor seizures of his arm, who was found to have a right frontal intraparenchymal lesion. Following resection, histopathological and immunohistochemical evaluations were completed, leading to a diagnosis of a primary CNS MZBCL of MALT type in the context of a negative workup of systemic disease. Neuroimaging, histopathological, and immunohistochemical findings, as well as a comprehensive literature review of similar cases, are discussed.

4.
Nat Neurosci ; 24(8): 1077-1088, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34059832

RESUMO

Nucleocytoplasmic transport (NCT) decline occurs with aging and neurodegeneration. Here, we investigated the NCT pathway in models of amyotrophic lateral sclerosis-fused in sarcoma (ALS-FUS). Expression of ALS-FUS led to a reduction in NCT and nucleoporin (Nup) density within the nuclear membrane of human neurons. FUS and Nups were found to interact independently of RNA in cells and to alter the phase-separation properties of each other in vitro. FUS-Nup interactions were not localized to nuclear pores, but were enriched in the nucleus of control neurons versus the cytoplasm of mutant neurons. Our data indicate that the effect of ALS-linked mutations on the cytoplasmic mislocalization of FUS, rather than on the physiochemical properties of the protein itself, underlie our reported NCT defects. An aberrant interaction between mutant FUS and Nups is underscored by studies in Drosophila, whereby reduced Nup expression rescued multiple toxic FUS-induced phenotypes, including abnormal nuclear membrane morphology in neurons.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Neurônios/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila , Humanos , Mutação , Proteína FUS de Ligação a RNA/genética
5.
J Neuropathol Exp Neurol ; 79(7): 809-812, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483606

RESUMO

Atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (aFTLD-U) is an uncommon cause of frontotemporal dementia characterized by fused in sarcoma-positive inclusions. It is classified as a subtype of frontotemporal lobar degeneration with FUS pathology. Cases with aFTLD-U pathology typically display an early onset of symptoms and severe psychobehavioral changes in the absence of significant aphasia, cognitive-intellectual dysfunction or motor features. This phenotype is regarded as being sufficiently unusual and consistent as to allow antemortem diagnosis with a high degree of accuracy. In this report, we describe 2 cases with aFTLD-U pathology that broaden the associated phenotype to include later age of onset, milder behavioral abnormalities and early memory and language impairment.


Assuntos
Encéfalo/patologia , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Fenótipo , Proteína FUS de Ligação a RNA/genética , Idoso , Feminino , Humanos , Masculino
6.
Acta Neuropathol ; 139(1): 83-98, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501924

RESUMO

Frontotemporal lobar degeneration with TDP-43 immunoreactive (TDP-ir) inclusions (FTLD-TDP) is sub-classified based on the pattern of neocortical pathology, with each subtype showing clinical and genetic correlations. Recent studies indicate that accurate subtyping of cases may be important to help identify genetic risk factors and develop biomarkers. Although most FTLD-TDP cases are easily classified, some do not match well to one of the existing subtypes. In particular, cases with the C9orf72 repeat expansion (C9+) have been reported to show FTLD-TDP type A, type B or a combination of A and B pathology (A + B). In our series of FTLD-TDP cases, we found that those lacking the C9orf72 mutation (non-C9) were all readily classified as type A (n = 29), B (n = 16) or C (n = 18), using current criteria and standard observational methods. This classification was validated using non-biased hierarchical cluster analysis (HCA) of neocortical pathology data. In contrast, only 14/28 (50%) of the C9+ cases were classified as either pure type A or pure type B, with the remainder showing A + B features. HCA confirmed separation of the C9+ cases into three groups. We then investigated whether patterns of subcortical TDP-ir pathology helped to classify the difficult cases. For the non-C9 cases, each subtype showed a consistent pattern of subcortical involvement with significant differences among the groups. The most distinguishing features included white matter threads, neuronal intranuclear inclusions in hippocampus and striatum, and delicate threads in CA1 in type A; glial cytoplasmic inclusions in white matter and neuronal cytoplasmic inclusions (NCI) in lower motor neurons in type B; compact NCI in striatum in type C. HCA of the C9+ cases based on subcortical features increased the number that clustered with the non-C9 type A (46%) or non-C9 type B (36%); however, there remained a C9+ group with A + B features (18%). These findings suggest that most FTLD-TDP cases can be classified using existing criteria and that each group also shows characteristic subcortical TDP-ir pathology. However, C9+ cases may be unique in the degree to which their pathology overlaps between FTLD-TDP types A and B.


Assuntos
Proteína C9orf72/genética , Demência Frontotemporal/classificação , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
7.
Mitochondrion ; 46: 298-301, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30114489

RESUMO

Muscle biopsy identified a possibly pathogenic, mitochondrial DNA D-loop insertion, in each of 5 family members from two generations, that was otherwise undetectable in most other tissues. The tissue specific regulation of heteroplasmy is reflected in an age related increase in muscle heteroplasmy level, across the pedigree. This latter finding is in keeping with previous reports (e.g. T408A, C16327) but differs in having a very high muscle heteroplasmy level, and appears maternally transmitted.


Assuntos
DNA Mitocondrial/genética , Herança Materna , Doenças Mitocondriais/patologia , Músculo Esquelético/patologia , Mutagênese Insercional , Biópsia , Humanos
8.
Acta Neuropathol Commun ; 6(1): 54, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29961428

RESUMO

Parkinson disease (PD) is the second most common neurodegenerative disorder and the leading neurodegenerative cause of motor disability. Pathologic accumulation of aggregated alpha synuclein (AS) protein in brain, and imbalance in the nigrostriatal system due to the loss of dopaminergic neurons in the substantia nigra- pars compacta, are hallmark features in PD. AS aggregation and propagation are considered to trigger neurotoxic mechanisms in PD, including mitochondrial deficits and oxidative stress. The eukaryotic elongation factor-2 kinase (eEF2K) mediates critical regulation of dendritic mRNA translation and is a crucial molecule in diverse forms of synaptic plasticity. Here we show that eEF2K activity, assessed by immuonohistochemical detection of eEF2 phosphorylation on serine residue 56, is increased in postmortem PD midbrain and hippocampus. Induction of aggressive, AS-related motor phenotypes in a transgenic PD M83 mouse model also increased brain eEF2K expression and activity. In cultures of dopaminergic N2A cells, overexpression of wild-type human AS or the A53T mutant increased eEF2K activity. eEF2K inhibition prevented the cytotoxicity associated with AS overexpression in N2A cells by improving mitochondrial function and reduced oxidative stress. Furthermore, genetic deletion of the eEF2K ortholog efk-1 in C. elegans attenuated human A53T AS induced defects in behavioural assays reliant on dopaminergic neuron function. These data suggest a role for eEF2K activity in AS toxicity, and support eEF2K inhibition as a potential target in reducing AS-induced oxidative stress in PD.


Assuntos
Encéfalo/metabolismo , Quinase do Fator 2 de Elongação/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Linhagem Celular Tumoral , Modelos Animais de Doenças , Quinase do Fator 2 de Elongação/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Técnicas de Cultura de Órgãos , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Escleroproteínas/toxicidade , alfa-Sinucleína/genética
9.
Neuron ; 95(4): 808-816.e9, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28817800

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 10-6). Postmortem neuropathology of five TIA1 mutations carriers showed a consistent pathological signature with numerous round, hyaline, TAR DNA-binding protein 43 (TDP-43)-positive inclusions. TIA1 mutations significantly increased the propensity of TIA1 protein to undergo phase transition. In live cells, TIA1 mutations delayed stress granule (SG) disassembly and promoted the accumulation of non-dynamic SGs that harbored TDP-43. Moreover, TDP-43 in SGs became less mobile and insoluble. The identification of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics in ALS/FTD pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Mutação/genética , Proteínas de Ligação a Poli(A)/genética , Adulto , Idoso , Proteínas de Ligação a DNA/metabolismo , Saúde da Família , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Proteína FUS de Ligação a RNA/metabolismo , Estresse Fisiológico/fisiologia , Antígeno-1 Intracelular de Células T , Fatores de Tempo , Transfecção
10.
Acta Neuropathol ; 134(1): 79-96, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28466142

RESUMO

Frontotemporal lobar degeneration with tau-negative, ubiquitin-immunoreactive (-ir) pathology (FTLD-U) is subclassified based on the type and cortical laminar distribution of neuronal inclusions. Following the discovery of the transactive response DNA-binding protein Mr 43 kD (TDP-43) as the ubiquitinated protein in most FTLD-U, the same pathological criteria have been used to classify FTLD cases based on TDP-43-ir changes. However, the fact that immunohistochemistry (IHC) for ubiquitin and TDP-43 each recognizes slightly different pathological changes in these cases means that the original FTLD-U subtype criteria may not be directly applicable for use with TDP-43 IHC. We formally re-evaluated the TDP-43-ir pathological features that characterize the different FTLD-U subtypes to see if the current classification could be refined. In our series of 78 cases, 81% were classified as one of the common FTLD-U subtypes (29% A, 35% B, 17% C). With TDP-43 IHC, each subtype demonstrated consistent intra-group pathological features and clear inter-group differences. The TDP-43-ir changes that characterized type A and C cases were similar to those seen with ubiquitin IHC; specifically, compact neuronal cytoplasmic inclusions (NCI), short thick dystrophic neurites (DN), and lentiform neuronal intranuclear inclusions concentrated in cortical layer II in type A cases, and a predominance of long thick DN in type C. However, type B cases showed significant differences with TDP-43 compared with ubiquitin IHC; with many diffuse granular NCI and wispy thread and dots-like profiles in all cortical layers. The remaining 15 cases (12 with C9orf72 mutations) showed changes that were consistent with combined type A and type B pathology. These findings suggest that the pathological criteria for subtyping FTLD cases based on TDP-43 IHC might benefit from some refinement that recognizes differences in the morphologies of NCI and neurites. Furthermore, there is a significant subset of cases (most with the C9orf72 mutation) with the pathological features of multiple FTLD-TDP subtypes for which appropriate classification is difficult.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/classificação , Demência Frontotemporal/patologia , Idoso , Idoso de 80 Anos ou mais , Proteína C9orf72/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Imuno-Histoquímica , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Ubiquitinas/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-28096243

RESUMO

Abnormal intracellular accumulation of the fused in sarcoma (FUS) protein is the characteristic pathological feature of cases of familial amyotrophic lateral sclerosis (ALS) caused by FUS mutations (ALS-FUS) and several uncommon disorders that may present with sporadic frontotemporal dementia (FTLD-FUS). Although these findings provide further support for the concept that ALS and FTD are closely related clinical syndromes with an overlapping molecular basis, important differences in the pathological features and results from experimental models indicate that ALS-FUS and FTLD-FUS have distinct pathogenic mechanisms.


Assuntos
Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteína FUS de Ligação a RNA/genética , Humanos
12.
Acta Neuropathol ; 131(4): 587-604, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26895297

RESUMO

Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is currently unclear. Based on our previous finding that FUS deposits are hypomethylated in FTLD-FUS but not in ALS-FUS, we have now investigated whether genetic or pharmacological inactivation of Protein arginine methyltransferase 1 (PRMT1) activity results in unmethylated FUS or in alternatively methylated forms of FUS. To do so, we generated FUS-specific monoclonal antibodies that specifically recognize unmethylated arginine (UMA), monomethylated arginine (MMA) or asymmetrically dimethylated arginine (ADMA). Loss of PRMT1 indeed not only results in an increase of UMA FUS and a decrease of ADMA FUS, but also in a significant increase of MMA FUS. Compared to ADMA FUS, UMA and MMA FUS exhibit much higher binding affinities to Transportin-1, the nuclear import receptor of FUS, as measured by pull-down assays and isothermal titration calorimetry. Moreover, we show that MMA FUS occurs exclusively in FTLD-FUS, but not in ALS-FUS. Our findings therefore provide additional evidence that FTLD-FUS and ALS-FUS are caused by distinct disease mechanisms although both share FUS deposits as a common denominator.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , beta Carioferinas/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Anticorpos/farmacologia , Arginina/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Células-Tronco Embrionárias , Inibidores Enzimáticos/farmacologia , Feminino , Degeneração Lobar Frontotemporal/genética , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína FUS de Ligação a RNA/imunologia , Ratos , beta Carioferinas/imunologia
13.
Neuropathology ; 36(1): 93-102, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26350538

RESUMO

Central nervous system (CNS) involvement by rheumatoid arthritis (RA) in the form of rheumatoid meningitis (RM) is rare and most commonly occurs in the setting of longstanding severe RA. Due to a wide range of clinical presentations and nonspecific laboratory findings, it presents a diagnostic challenge often requiring brain biopsy. Only a few histopathologically confirmed cases have been described in the literature. Our aim is to describe two cases of RM and review the literature. The first case is of a previously healthy 37-year-old man who presented with severe headaches and focal neurologic deficits. Magnetic resonance imaging demonstrated abnormal leptomeningeal enhancement in the left frontal and parietal sulci. The second case is of a 62-year-old woman with a history of mild chronic joint pain who presented with confusion, personality changes and seizures. Both patients ultimately underwent brain biopsy which demonstrated RM on pathologic examination. Administration of corticosteroids resulted in significant clinical improvement in both cases. To our knowledge, our unusual case of RM in the young man is the fifth reported case of rheumatoid meningitis in a patient with no prior history of RA. Such an atypical presentation makes diagnosis even more difficult and highlights the need for awareness of this entity in the diagnostic consideration of a patient presenting with unexplained neurologic symptoms. Our literature review underscores the clinical and pathologic heterogeneity of CNS involvement in RA.


Assuntos
Artrite Reumatoide/patologia , Meningite/patologia , Corticosteroides/uso terapêutico , Adulto , Anti-Inflamatórios/uso terapêutico , Artralgia/etiologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/psicologia , Encéfalo/patologia , Dexametasona/uso terapêutico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Meningite/tratamento farmacológico , Meningite/psicologia , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos , Quadriplegia/etiologia
14.
Acta Neuropathol ; 130(6): 845-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26374446

RESUMO

Hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of frontotemporal dementia and motor neuron disease. One consequence of the mutation is the formation of different potentially toxic polypeptides composed of dipeptide repeats (DPR) (poly-GA, -GP, -GR, -PA, -PR) generated by repeat-associated non-ATG (RAN) translation. While previous studies focusing on poly-GA pathology have failed to detect any clinico-pathological correlations in C9ORF72 mutation cases, recent data from animal and cell culture models suggested that it may be only specific DPR species that are toxic and only when accumulated in certain intracellular compartments. Therefore, we performed a systematic clinico-pathological correlative analysis with counting of actual numbers of distinct types of inclusion (neuronal cytoplasmic and intranuclear inclusions, dystrophic neurites) for each DPR protein in relevant brain regions (premotor cortex, lower motor neurons) in a cohort of 35 C9ORF72 mutation cases covering the clinical spectrum from those with pure MND, mixed FTD/MND and pure FTD. While each DPR protein pathology had a similar pattern of anatomical distribution, the total amount of inclusions for each DPR protein varied remarkably (poly-GA > GP > GR > PR/PA), indicating that RAN translation seems to be more effective from sense than from antisense transcripts. Importantly, with the exception of moderate associations for the amount of poly-GA-positive dystrophic neurites with degeneration in the frontal cortex and total burden of poly-GA pathology with disease onset, no relationship was identified for any other DPR protein pathology with degeneration or phenotype. Biochemical analysis revealed a close correlation between insoluble DPR protein species and numbers of visible inclusions, while we did not find any evidence for the presence of soluble DPR protein species. Thus, overall our findings strongly argue against a role of DPR protein aggregation as major and exclusive pathomechanism in C9ORF72 pathogenesis. However, this does not exclude that DPR protein formation might be essential in C9ORF72 pathogenesis in interplay with other consequences associated with the C9ORF72 repeat expansion.


Assuntos
Expansão das Repetições de DNA , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Proteínas/genética , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteína C9orf72 , Proteínas de Ligação a DNA/metabolismo , Feminino , Imunofluorescência , Demência Frontotemporal/metabolismo , Heterozigoto , Humanos , Nervo Hipoglosso , Immunoblotting , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/metabolismo , Índice de Gravidade de Doença , Medula Espinal/metabolismo , Medula Espinal/patologia , Bancos de Tecidos
15.
Neuropsychiatr Dis Treat ; 10: 297-310, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600223

RESUMO

The term frontotemporal lobar degeneration (FTLD) refers to a group of progressive brain diseases, which preferentially involve the frontal and temporal lobes. Depending on the primary site of atrophy, the clinical manifestation is dominated by behavior alterations or impairment of language. The onset of symptoms usually occurs before the age of 60 years, and the mean survival from diagnosis varies between 3 and 10 years. The prevalence is estimated at 15 per 100,000 in the population aged between 45 and 65 years, which is similar to the prevalence of Alzheimer's disease in this age group. There are two major clinical subtypes, behavioral-variant frontotemporal dementia and primary progressive aphasia. The neuropathology underlying the clinical syndromes is also heterogeneous. A common feature is the accumulation of certain neuronal proteins. Of these, the microtubule-associated protein tau (MAPT), the transactive response DNA-binding protein, and the fused in sarcoma protein are most important. Approximately 10% to 30% of FTLD shows an autosomal dominant pattern of inheritance, with mutations in the genes for MAPT, progranulin (GRN), and in the chromosome 9 open reading frame 72 (C9orf72) accounting for more than 80% of familial cases. Although significant advances have been made in recent years regarding diagnostic criteria, clinical assessment instruments, neuropsychological tests, cerebrospinal fluid biomarkers, and brain imaging techniques, the clinical diagnosis remains a challenge. To date, there is no specific pharmacological treatment for FTLD. Some evidence has been provided for serotonin reuptake inhibitors to reduce behavioral disturbances. No large-scale or high-quality studies have been conducted to determine the efficacy of non-pharmacological treatment approaches in FTLD. In view of the limited treatment options, caregiver education and support is currently the most important component of the clinical management.

16.
Hum Mol Genet ; 23(6): 1467-78, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24163244

RESUMO

Progranulin (GRN) mutations causing haploinsufficiency are a major cause of frontotemporal lobar degeneration (FTLD-TDP). Recent discoveries demonstrating sortilin (SORT1) is a neuronal receptor for PGRN endocytosis and a determinant of plasma PGRN levels portend the development of enhancers targeting the SORT1-PGRN axis. We demonstrate the preclinical efficacy of several approaches through which impairing PGRN's interaction with SORT1 restores extracellular PGRN levels. Our report is the first to demonstrate the efficacy of enhancing PGRN levels in iPSC neurons derived from frontotemporal dementia (FTD) patients with PGRN deficiency. We validate a small molecule preferentially increases extracellular PGRN by reducing SORT1 levels in various mammalian cell lines and patient-derived iPSC neurons and lymphocytes. We further demonstrate that SORT1 antagonists and a small-molecule binder of PGRN588₋593, residues critical for PGRN-SORT1 binding, inhibit SORT1-mediated PGRN endocytosis. Collectively, our data demonstrate that the SORT1-PGRN axis is a viable target for PGRN-based therapy, particularly in FTD-GRN patients.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Endocitose/efeitos dos fármacos , Demência Frontotemporal/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Piridinas/farmacologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Linhagem Celular Tumoral , Demência Frontotemporal/patologia , Variação Genética , Células HEK293 , Haploinsuficiência , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linfócitos/metabolismo , Progranulinas , Reprodutibilidade dos Testes
17.
Nat Neurosci ; 16(10): 1383-91, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24036913

RESUMO

Defects in DNA repair have been extensively linked to neurodegenerative diseases, but the exact mechanisms remain poorly understood. We found that FUS, an RNA/DNA-binding protein that has been linked to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, is important for the DNA damage response (DDR). The function of FUS in DDR involved a direct interaction with histone deacetylase 1 (HDAC1), and the recruitment of FUS to double-stranded break sites was important for proper DDR signaling. Notably, FUS proteins carrying familial ALS mutations were defective in DDR and DNA repair and showed a diminished interaction with HDAC1. Moreover, we observed increased DNA damage in human ALS patients harboring FUS mutations. Our findings suggest that an impaired DDR and DNA repair may contribute to the pathogenesis of neurodegenerative diseases linked to FUS mutations.


Assuntos
Dano ao DNA/fisiologia , Histona Desacetilase 1/metabolismo , Neurônios/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Células Cultivadas , Células HEK293 , Histona Desacetilase 1/genética , Humanos , Camundongos , Neurônios/patologia , Ligação Proteica/fisiologia , Proteína FUS de Ligação a RNA/genética
18.
Neurobiol Aging ; 34(9): 2235.e11-3, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23635657

RESUMO

The nuclear protein fused in sarcoma (FUS) is found in cytoplasmic inclusions in a subset of patients with the neurodegenerative disorder frontotemporal lobar degeneration (FTLD-FUS). FUS contains a methylated arginine-glycine-glycine domain that is required for transport into the nucleus. Recent findings have shown that this domain is hypomethylated in patients with FTLD-FUS. To determine whether the cause of hypomethylation is the result of mutations in protein N-arginine methyltransferases (PRMTs), we selected 3 candidate genes (PRMT1, PRMT3, and PRMT8) and performed complete sequencing analysis and real-time polymerase chain reaction mRNA expression analysis in 20 FTLD-FUS cases. No mutations or statistically significant changes in expression were observed in our patient samples, suggesting that defects in PRMTs are not the cause of FTLD-FUS.


Assuntos
DNA/genética , Degeneração Lobar Frontotemporal/genética , Proteínas de Membrana/genética , Mutação , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Humanos , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de Proteína
19.
Am J Dermatopathol ; 35(6): 650-4, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23392133

RESUMO

Previous clinical and experimental studies suggested that invasion of the brain by metastatic melanoma may follow the external surfaces of vascular channels, that is, angiotropic extravascular migratory metastasis. Such angiotropic invasion seemss analogous to that of neoplastic glial invasion of the nervous system. We, therefore, have retrospectively investigated 20 primary melanoma cases and their respective metastatic brain lesions. The following parameters were analyzed in each primary melanoma: presence of angiotropism, Breslow thickness, Clark level, mitotic rate, sentinel lymph node (SLN) status, and time interval between the primary lesion and the metastasis. The metastatic brain lesions were examined for the presence of angiotropism. Of the 20 cases, 14 showed angiotropism in the primary lesion. The angiotropic group had a significantly deeper Breslow thickness (median 4.4 mm vs. 1.4 mm, P < 0.01) and was more mitotically active (median 11 vs. 4.7 mitoses/mm, P = 0.04). Interestingly, the angiotropic group had an average time lapse of 33 months from the primary lesion to the brain metastasis, whereas the nonangiotropic group had a 57-month time interval. Although the Kaplan-Meier analysis failed to show a survival difference in this small cohort (P = 0.235), there was a trend toward significance. Seven of 20 brain metastases showed angiotropism; however, no significant correlation between angiotropism in the primary melanomas and the corresponding metastatic lesions could be demonstrated. Indeed, angiotropism in the brain metastases was difficult to assess because the available material were generally small partial biopsy samplings and many showed conspicuous necrosis. Ten melanoma patients underwent SLN biopsy. The 3 of 6 positive cases in the angiotropic group had an average time lapse of 32 months from the primary lesion to the brain metastasis, whereas the 4 positive SLN biopsies in the nonangiotropic group had an average of 63 months. This preliminary study of angiotropism in primary melanomas and their corresponding brain metastasis shows a striking trend suggesting that angiotropism in primary melanomas may predict the rapid development of brain metastases. This study also has demonstrated the difficulty in studying angiotropism in melanoma brain metastases because of small sample sizes and abundance of necrotic tissue. The authors are in the process of collecting larger and more representative numbers of melanoma brain metastases for further investigations.


Assuntos
Neoplasias Encefálicas/secundário , Movimento Celular , Melanoma/secundário , Neoplasias Cutâneas/patologia , Neoplasias Encefálicas/mortalidade , Distribuição de Qui-Quadrado , Feminino , Humanos , Estimativa de Kaplan-Meier , Linfonodos/patologia , Metástase Linfática , Masculino , Melanoma/mortalidade , Pessoa de Meia-Idade , Índice Mitótico , Necrose , Invasividade Neoplásica , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Biópsia de Linfonodo Sentinela , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/cirurgia , Fatores de Tempo
20.
EMBO J ; 31(22): 4258-75, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22968170

RESUMO

Fused in sarcoma (FUS) is a nuclear protein that carries a proline-tyrosine nuclear localization signal (PY-NLS) and is imported into the nucleus via Transportin (TRN). Defects in nuclear import of FUS have been implicated in neurodegeneration, since mutations in the PY-NLS of FUS cause amyotrophic lateral sclerosis (ALS). Moreover, FUS is deposited in the cytosol in a subset of frontotemporal lobar degeneration (FTLD) patients. Here, we show that arginine methylation modulates nuclear import of FUS via a novel TRN-binding epitope. Chemical or genetic inhibition of arginine methylation restores TRN-mediated nuclear import of ALS-associated FUS mutants. The unmethylated arginine-glycine-glycine domain preceding the PY-NLS interacts with TRN and arginine methylation in this domain reduces TRN binding. Inclusions in ALS-FUS patients contain methylated FUS, while inclusions in FTLD-FUS patients are not methylated. Together with recent findings that FUS co-aggregates with two related proteins of the FET family and TRN in FTLD-FUS but not in ALS-FUS, our study provides evidence that these two diseases may be initiated by distinct pathomechanisms and implicates alterations in arginine methylation in pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Arginina/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Degeneração Lobar Frontotemporal/metabolismo , Inativação Gênica , Células HeLa , Humanos , Carioferinas/genética , Metilação , Dados de Sequência Molecular , Prolina/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA