Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 133(2): 553-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22951717

RESUMO

Skin that is exposed to radiation has an impaired ability to heal wounds. This is especially true for whole-body irradiation, where even moderate nonlethal doses can result in wound-healing deficits. Our previous attempts to administer dermal cells locally to wounds to correct radiation-induced deficits were hampered by poor cell retention. Here we improve the outcome by using biodegradable fibrin microbeads (FMBs) to isolate a population of mesenchymal marrow-derived stromal cells (MSCs) from murine bone marrow by their specific binding to the fibrin matrix, culture them to high density in vitro, and deliver them as MSCs on FMBs at the wound site. MSCs are retained locally, proliferate in site, and assist wounds in gaining tensile strength in whole-body irradiated mice with or without additional skin-only exposure. MSC-FMBs were effective in two different mouse strains but were ineffective across a major histocompatability barrier. Remarkably, irradiated mice whose wounds were treated with MSC-FMBs showed enhanced hair regrowth, suggesting indirect effect on the correction of radiation-induced follicular damage. Further studies showed that additional wound-healing benefit could be gained by administration of granulocyte colony-stimulating factor and AMD3100. Collagen strips coated with haptides and MSCs were also highly effective in correcting radiation-induced wound-healing deficits.


Assuntos
Fibrina/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Lesões Experimentais por Radiação/terapia , Dermatopatias/terapia , Cicatrização/fisiologia , Implantes Absorvíveis , Animais , Células Cultivadas , Derme/fisiologia , Derme/efeitos da radiação , Modelos Animais de Doenças , Feminino , Fibrina/fisiologia , Vida Livre de Germes , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Microesferas , Lesões Experimentais por Radiação/fisiopatologia , Dermatopatias/fisiopatologia , Resistência à Tração/fisiologia , Irradiação Corporal Total/efeitos adversos , Cicatrização/efeitos da radiação
2.
BMC Dev Biol ; 8: 58, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18507824

RESUMO

BACKGROUND: Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. RESULTS: Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7) is required for determination of granule morphology and number. CONCLUSION: Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network.


Assuntos
Grânulos Citoplasmáticos/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/ultraestrutura , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , RNA Helicases DEAD-box/genética , Dineínas/genética , Embrião não Mamífero/embriologia , Marcadores Genéticos , Proteínas de Fluorescência Verde , Hibridização In Situ , Microtúbulos/ultraestrutura , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Dev Cell ; 11(4): 434-6, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17011482

RESUMO

Epithelial mesenchymal transition (EMT) is a complex process that involves changes in gene expression, cytoskeleton organization, cell adhesion, and extracellular matrix composition. Screening for genes mediating EMT and cancer metastasis, Waerner, Alacakaptan, and colleagues identified ILEI, a cytokine-like protein that plays an essential role in EMT, tumor growth, and late steps of metastasis.


Assuntos
Células Epiteliais/citologia , Interleucinas/biossíntese , Mesoderma/citologia , Animais , Linhagem Celular Transformada , Transformação Celular Neoplásica , Humanos , Interleucinas/metabolismo , Camundongos , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias/etiologia , Neoplasias/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA