Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32923903

RESUMO

PURPOSE: Our goal was to identify the opportunities and challenges in analyzing data from the American Association of Cancer Research Project Genomics Evidence Neoplasia Information Exchange (GENIE), a multi-institutional database derived from clinically driven genomic testing, at both the inter- and the intra-institutional level. Inter-institutionally, we identified genotypic differences between primary and metastatic tumors across the 3 most represented cancers in GENIE. Intra-institutionally, we analyzed the clinical characteristics of the Vanderbilt-Ingram Cancer Center (VICC) subset of GENIE to inform the interpretation of GENIE as a whole. METHODS: We performed overall cohort matching on the basis of age, ethnicity, and sex of 13,208 patients stratified by cancer type (breast, colon, or lung) and sample site (primary or metastatic). We then determined whether detected variants, at the gene level, were associated with primary or metastatic tumors. We extracted clinical data for the VICC subset from VICC's clinical data warehouse. Treatment exposures were mapped to a 13-class schema derived from the HemOnc ontology. RESULTS: Across 756 genes, there were significant differences in all cancer types. In breast cancer, ESR1 variants were over-represented in metastatic samples (odds ratio, 5.91; q < 10-6). TP53 mutations were over-represented in metastatic samples across all cancers. VICC had a significantly different cancer type distribution than that of GENIE but patients were well matched with respect to age, sex, and sample type. Treatment data from VICC was used for a bipartite network analysis, demonstrating clusters with a mix of histologies and others being more histology specific. CONCLUSION: This article demonstrates the feasibility of deriving meaningful insights from GENIE at the inter- and intra-institutional level and illuminates the opportunities and challenges of the data GENIE contains. The results should help guide future development of GENIE, with the goal of fully realizing its potential for accelerating precision medicine.

2.
JAMA Netw Open ; 3(3): e200265, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32119094

RESUMO

Importance: Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. Objective: To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. Design, Setting, and Participants: In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. Main Outcomes and Measurements: Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists' specificity with radiologists' sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists' recall assessment was developed and evaluated. Results: Overall, 144 231 screening mammograms from 85 580 US women (952 cancer positive ≤12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166 578 examinations from 68 008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists' sensitivity, lower than community-practice radiologists' specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. Conclusions and Relevance: While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Mamografia/métodos , Radiologistas , Adulto , Idoso , Algoritmos , Inteligência Artificial , Detecção Precoce de Câncer , Feminino , Humanos , Pessoa de Meia-Idade , Radiologia , Sensibilidade e Especificidade , Suécia , Estados Unidos
3.
PLoS One ; 13(12): e0208422, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596661

RESUMO

Checkpoint inhibitor immunotherapies have had major success in treating patients with late-stage cancers, yet the minority of patients benefit. Mutation load and PD-L1 staining are leading biomarkers associated with response, but each is an imperfect predictor. A key challenge to predicting response is modeling the interaction between the tumor and immune system. We begin to address this challenge with a multifactorial model for response to anti-PD-L1 therapy. We train a model to predict immune response in patients after treatment based on 36 clinical, tumor, and circulating features collected prior to treatment. We analyze data from 21 bladder cancer patients using the elastic net high-dimensional regression procedure and, as training set error is a biased and overly optimistic measure of prediction error, we use leave-one-out cross-validation to obtain unbiased estimates of accuracy on held-out patients. In held-out patients, the model explains 79% of the variance in T cell clonal expansion. This predicted immune response is multifactorial, as the variance explained is at most 23% if clinical, tumor, or circulating features are excluded. Moreover, if patients are triaged according to predicted expansion, only 38% of non-durable clinical benefit (DCB) patients need be treated to ensure that 100% of DCB patients are treated. In contrast, using mutation load or PD-L1 staining alone, one must treat at least 77% of non-DCB patients to ensure that all DCB patients receive treatment. Thus, integrative models of immune response may improve our ability to anticipate clinical benefit of immunotherapy.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Proliferação de Células , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/fisiologia , Modelos Estatísticos , Inibidores de Proteínas Quinases/uso terapêutico , Linfócitos T/fisiologia , Adulto , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Antígeno B7-H1/imunologia , Biomarcadores Farmacológicos/análise , Biomarcadores Tumorais/análise , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/imunologia , Carcinoma de Células de Transição/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Evolução Clonal/efeitos dos fármacos , Evolução Clonal/genética , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Masculino , Mutação , Medição de Risco , Linfócitos T/efeitos dos fármacos , Resultado do Tratamento , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA