Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Lancet Digit Health ; 6(8): e562-e569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38987116

RESUMO

BACKGROUND: The density of tumour-infiltrating lymphocytes (TILs) could be prognostic in ductal carcinoma in situ (DCIS). However, manual TIL quantification is time-consuming and suffers from interobserver and intraobserver variability. In this study, we developed a TIL-based computational pathology biomarker and evaluated its association with the risk of recurrence and benefit of adjuvant treatment in a clinical trial cohort. METHODS: In this retrospective cohort study, a computational pathology pipeline was developed to generate a TIL-based biomarker (CPath TIL categories). Subsequently, the signature underwent a masked independent validation on H&E-stained whole-section images of 755 patients with DCIS from the UK/ANZ DCIS randomised controlled trial. Specifically, continuous biomarker CPath TIL score was calculated as the average TIL density in the DCIS microenvironment and dichotomised into binary biomarker CPath TIL categories (CPath TIL-high vs CPath TIL-low) using the median value as a cutoff. The primary outcome was ipsilateral breast event (IBE; either recurrence of DCIS [DCIS-IBE] or invasive progression [I-IBE]). The Cox proportional hazards model was used to estimate the hazard ratio (HR). FINDINGS: CPath TIL-score was evaluable in 718 (95%) of 755 patients (151 IBEs). Patients with CPath TIL-high DCIS had a greater risk of IBE than those with CPath TIL-low DCIS (HR 2·10 [95% CI 1·39-3·18]; p=0·0004). The risk of I-IBE was greater in patients with CPath TIL-high DCIS than those with CPath TIL-low DCIS (3·09 [1·56-6·14]; p=0·0013), and the risk of DCIS-IBE was non-significantly higher in those with CPath TIL-high DCIS (1·61 [0·95-2·72]; p=0·077). A significant interaction (pinteraction=0·025) between CPath TIL categories and radiotherapy was observed with a greater magnitude of radiotherapy benefit in preventing IBE in CPath TIL-high DCIS (0·32 [0·19-0·54]) than CPath TIL-low DCIS (0·40 [0·20-0·81]). INTERPRETATION: High TIL density is associated with higher recurrence risk-particularly of invasive recurrence-and greater radiotherapy benefit in patients with DCIS. Our TIL-based computational pathology signature has a prognostic and predictive role in DCIS. FUNDING: National Cancer Institute under award number U01CA269181, Cancer Research UK (C569/A12061; C569/A16891), and the Breast Cancer Research Foundation, New York (NY, USA).


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Linfócitos do Interstício Tumoral , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/patologia , Neoplasias da Mama/patologia , Estudos Retrospectivos , Prognóstico , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Biomarcadores Tumorais , Reino Unido , Idoso , Adulto
2.
Heliyon ; 10(13): e33618, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39035539

RESUMO

Background: The changes in the tumor microenvironment of high-grade serous ovarian carcinomas following neoadjuvant chemotherapy are a complex area of study. Previous research underscores the importance of investigating the immune and collagen components within the tumor microenvironment for prognostic implications. Methods: In this study, we utilized computational pathology techniques with Hematoxylin and Eosin-stained images to quantitatively characterize the immune and collagen architecture within the tumor microenvironment of patients with high-grade serous ovarian carcinoma. Results: Our analysis of 12 pre- and post-neoadjuvant chemotherapy images revealed an increase in immune infiltrate, primarily within the epithelial region. Additionally, post-neoadjuvant chemotherapy images exhibited chaotic collagen architecture compared to pre-neoadjuvant chemotherapy images. Importantly, features extracted from post-neoadjuvant chemotherapy images showed associations with overall survival, potentially aiding in the selection of patients for immunotherapy trials. Conclusions: These findings offer critical insights into the changes in the tumor microenvironment of high-grade serous ovarian carcinomas following neoadjuvant chemotherapy and their potential implications for clinical outcomes.

3.
medRxiv ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39072032

RESUMO

Background: Visual scoring of tubular damage has limitations in capturing the full spectrum of structural changes and prognostic potential. We investigate if computationally quantified tubular features can enhance prognostication and reveal spatial relationships with interstitial fibrosis. Methods: Deep-learning and image-processing-based segmentations were employed in N=254/266 PAS-WSIs from the NEPTUNE/CureGN datasets (135/153 focal segmental glomerulosclerosis and 119/113 minimal change disease) for: cortex, tubular lumen (TL), epithelium (TE), nuclei (TN), and basement membrane (TBM). N=104 pathomic features were extracted from these segmented tubular substructures and summarized at the patient level using summary statistics. The tubular features were quantified across the biopsy and in manually segmented regions of mature interstitial fibrosis and tubular atrophy (IFTA), pre-IFTA and non-IFTA in the NEPTUNE dataset. Minimum Redundancy Maximum Relevance was used in the NEPTUNE dataset to select features most associated with disease progression and proteinuria remission. Ridge-penalized Cox models evaluated their predictive discrimination compared to clinical/demographic data and visual-assessment. Models were evaluated in the CureGN dataset. Results: N=9 features were predictive of disease progression and/or proteinuria remission. Models with tubular features had high prognostic accuracy in both NEPTUNE and CureGN datasets and increased prognostic accuracy for both outcomes (5.6%-7.7% and 1.6%-4.6% increase for disease progression and proteinuria remission, respectively) compared to conventional parameters alone in the NEPTUNE dataset. TBM thickness/area and TE simplification progressively increased from non- to pre- and mature IFTA. Conclusions: Previously under-recognized, quantifiable, and clinically relevant tubular features in the kidney parenchyma can enhance understanding of mechanisms of disease progression and risk stratification.

4.
Nat Rev Clin Oncol ; 21(8): 628-637, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849530

RESUMO

Artificial intelligence (AI) stands at the threshold of revolutionizing clinical oncology, with considerable potential to improve early cancer detection and risk assessment, and to enable more accurate personalized treatment recommendations. However, a notable imbalance exists in the distribution of the benefits of AI, which disproportionately favour those living in specific geographical locations and in specific populations. In this Perspective, we discuss the need to foster the development of equitable AI tools that are both accurate in and accessible to a diverse range of patient populations, including those in low-income to middle-income countries. We also discuss some of the challenges and potential solutions in attaining equitable AI, including addressing the historically limited representation of diverse populations in existing clinical datasets and the use of inadequate clinical validation methods. Additionally, we focus on extant sources of inequity including the type of model approach (such as deep learning, and feature engineering-based methods), the implications of dataset curation strategies, the need for rigorous validation across a variety of populations and settings, and the risk of introducing contextual bias that comes with developing tools predominantly in high-income countries.


Assuntos
Inteligência Artificial , Oncologia , Neoplasias , Humanos , Neoplasias/terapia , Países em Desenvolvimento
6.
Res Sq ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798599

RESUMO

Both overt and indolent inflammatory insults in heart transplantation can accelerate pathologic cardiac remodeling, but there are few tools for monitoring the speed and severity of remodeling over time. To address this need, we developed an automated computational pathology system to measure pathologic remodeling in transplant biopsy samples in a large, retrospective cohort of n=2167 digitized heart transplant biopsy slides. Biopsy images were analyzed to identify the pathologic stromal changes associated with future allograft loss or advanced allograft vasculopathy. Biopsy images were then analyzed to assess which historical allo-inflammatory events drive progression of these pathologic stromal changes over time in serial biopsy samples. The top-5 features of pathologic stromal remodeling most strongly associated with adverse outcomes were also strongly associated with histories of both overt and indolent inflammatory events. Our findings identify previously unappreciated subgroups of higher- and lower-risk transplant patients, and highlight the translational potential of digital pathology analysis.

7.
Heliyon ; 10(8): e29602, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665576

RESUMO

Objectives: To evaluate the added benefit of integrating features from pre-treatment MRI (radiomics) and digitized post-surgical pathology slides (pathomics) in prostate cancer (PCa) patients for prognosticating outcomes post radical-prostatectomy (RP) including a) rising prostate specific antigen (PSA), and b) extraprostatic-extension (EPE). Methods: Multi-institutional data (N = 58) of PCa patients who underwent pre-treatment 3-T MRI prior to RP were included in this retrospective study. Radiomic and pathomic features were extracted from PCa regions on MRI and RP specimens delineated by expert clinicians. On training set (D1, N = 44), Cox Proportional-Hazards models MR, MP and MRaP were trained using radiomics, pathomics, and their combination, respectively, to prognosticate rising PSA (PSA > 0.03 ng/mL). Top features from MRaP were used to train a model to predict EPE on D1 and test on external dataset (D2, N = 14). C-index, Kalplan-Meier curves were used for survival analysis, and area under ROC (AUC) was used for EPE. MRaP was compared with the existing post-treatment risk-calculator, CAPRA (MC). Results: Patients had median follow-up of 34 months. MRaP (c-index = 0.685 ± 0.05) significantly outperformed MR (c-index = 0.646 ± 0.05), MP (c-index = 0.631 ± 0.06) and MC (c-index = 0.601 ± 0.071) (p < 0.0001). Cross-validated Kaplan-Meier curves showed significant separation among risk groups for rising PSA for MRaP (p < 0.005, Hazard Ratio (HR) = 11.36) as compared to MR (p = 0.64, HR = 1.33), MP (p = 0.19, HR = 2.82) and MC (p = 0.10, HR = 3.05). Integrated radio-pathomic model MRaP (AUC = 0.80) outperformed MR (AUC = 0.57) and MP (AUC = 0.76) in predicting EPE on external-data (D2). Conclusions: Results from this preliminary study suggest that a combination of radiomic and pathomic features can better predict post-surgical outcomes (rising PSA and EPE) compared to either of them individually as well as extant prognostic nomogram (CAPRA).

8.
Cell Rep Med ; 5(3): 101447, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442713

RESUMO

There is an unmet clinical need for a non-invasive and cost-effective test for oral squamous cell carcinoma (OSCC) that informs clinicians when a biopsy is warranted. Human beta-defensin 3 (hBD-3), an epithelial cell-derived anti-microbial peptide, is pro-tumorigenic and overexpressed in early-stage OSCC compared to hBD-2. We validate this expression dichotomy in carcinoma in situ and OSCC lesions using immunofluorescence microscopy and flow cytometry. The proportion of hBD-3/hBD-2 levels in non-invasively collected lesional cells compared to contralateral normal cells, obtained by ELISA, generates the beta-defensin index (BDI). Proof-of-principle and blinded discovery studies demonstrate that BDI discriminates OSCC from benign lesions. A multi-center validation study shows sensitivity and specificity values of 98.2% (95% confidence interval [CI] 90.3-99.9) and 82.6% (95% CI 68.6-92.2), respectively. A proof-of-principle study shows that BDI is adaptable to a point-of-care assay using microfluidics. We propose that BDI may fulfill a major unmet need in low-socioeconomic countries where pathology services are lacking.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , beta-Defensinas , Humanos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/patologia , beta-Defensinas/análise , beta-Defensinas/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologia , Biomarcadores , Carcinoma de Células Escamosas de Cabeça e Pescoço
9.
NPJ Precis Oncol ; 8(1): 80, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553633

RESUMO

This review delves into the most recent advancements in applying artificial intelligence (AI) within neuro-oncology, specifically emphasizing work on gliomas, a class of brain tumors that represent a significant global health issue. AI has brought transformative innovations to brain tumor management, utilizing imaging, histopathological, and genomic tools for efficient detection, categorization, outcome prediction, and treatment planning. Assessing its influence across all facets of malignant brain tumor management- diagnosis, prognosis, and therapy- AI models outperform human evaluations in terms of accuracy and specificity. Their ability to discern molecular aspects from imaging may reduce reliance on invasive diagnostics and may accelerate the time to molecular diagnoses. The review covers AI techniques, from classical machine learning to deep learning, highlighting current applications and challenges. Promising directions for future research include multimodal data integration, generative AI, large medical language models, precise tumor delineation and characterization, and addressing racial and gender disparities. Adaptive personalized treatment strategies are also emphasized for optimizing clinical outcomes. Ethical, legal, and social implications are discussed, advocating for transparency and fairness in AI integration for neuro-oncology and providing a holistic understanding of its transformative impact on patient care.

10.
Circ Heart Fail ; 17(2): e010950, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38348670

RESUMO

BACKGROUND: Cardiac allograft rejection is the leading cause of early graft failure and is a major focus of postheart transplant patient care. While histological grading of endomyocardial biopsy samples remains the diagnostic standard for acute rejection, this standard has limited diagnostic accuracy. Discordance between biopsy rejection grade and patient clinical trajectory frequently leads to both overtreatment of indolent processes and delayed treatment of aggressive ones, spurring the need to investigate the adequacy of the current histological criteria for assessing clinically important rejection outcomes. METHODS: N=2900 endomyocardial biopsy images were assigned a rejection grade label (high versus low grade) and a clinical trajectory label (evident versus silent rejection). Using an image analysis approach, n=370 quantitative morphology features describing the lymphocytes and stroma were extracted from each slide. Two models were constructed to compare the subset of features associated with rejection grades versus those associated with clinical trajectories. A proof-of-principle machine learning pipeline-the cardiac allograft rejection evaluator-was then developed to test the feasibility of identifying the clinical severity of a rejection event. RESULTS: The histopathologic findings associated with conventional rejection grades differ substantially from those associated with clinically evident allograft injury. Quantitative assessment of a small set of well-defined morphological features can be leveraged to more accurately reflect the severity of rejection compared with that achieved by the International Society of Heart and Lung Transplantation grades. CONCLUSIONS: Conventional endomyocardial samples contain morphological information that enables accurate identification of clinically evident rejection events, and this information is incompletely captured by the current, guideline-endorsed, rejection grading criteria.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Humanos , Miocárdio/patologia , Transplante de Coração/efeitos adversos , Insuficiência Cardíaca/patologia , Coração , Aloenxertos , Rejeição de Enxerto/diagnóstico , Biópsia
11.
Transl Vis Sci Technol ; 13(1): 29, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38289610

RESUMO

Purpose: The goal of this study was to evaluate the role of texture-based baseline radiomic features (Fr) and dynamic radiomics alterations (delta, FΔr) within multiple targeted compartments on optical coherence tomography (OCT) scans to predict response to anti-vascular endothelial growth factor (VEGF) therapy in neovascular age-related macular degeneration (nAMD). Methods: HAWK is a phase 3 clinical trial data set of active nAMD patients (N = 1082) comparing brolucizumab and aflibercept. This analysis included patients receiving 6 mg brolucizumab or 2 mg aflibercept and categorized as complete responders (n = 280) and incomplete responders (n = 239) based on whether or not the eyes achieved/maintained fluid resolution on OCT. A total of 481 Fr were extracted from each of the fluid, subretinal hyperreflective material (SHRM), retinal tissue, and sub-retinal pigment epithelium (RPE) compartments. Most discriminating eight baseline features, selected by the minimum redundancy, maximum relevance feature selection, were evaluated using a quadratic discriminant analysis (QDA) classifier on the training set (Str, n = 363) to differentiate between the two patient groups. Classifier performance was subsequently validated on independent test set (St, n = 156). Results: In total, 519 participants were included in this analysis from the HAWK phase 3 study. There were 280 complete responders and 219 incomplete responders. Compartmental analysis of radiomics featured identified the sub-RPE and SHRM compartments as the most distinguishing between the two response groups. The QDA classifier yielded areas under the curve of 0.78, 0.79, and 0.84, respectively, using Fr, FΔr, and combined Fr, FΔr, and Fc on St. Conclusions: Utilizing compartmental static and dynamic radiomics features, unique differences were identified between eyes that respond differently to anti-VEGF therapy in a large phase 3 trial that may provide important predictive value. Translational Relevance: Imaging biomarkers, such as radiomics features identified in this analysis, for predicting treatment response are needed to enhanced precision medicine in the management of nAMD.


Assuntos
Inibidores da Angiogênese , Tomografia de Coerência Óptica , Degeneração Macular Exsudativa , Humanos , Inibidores da Angiogênese/uso terapêutico , Radiômica , Epitélio Pigmentado da Retina , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Acuidade Visual , Degeneração Macular Exsudativa/diagnóstico por imagem , Degeneração Macular Exsudativa/tratamento farmacológico
12.
Comput Methods Programs Biomed ; 244: 107990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194767

RESUMO

BACKGROUND: Radiomics is a method within medical image analysis that involves the extraction of quantitative data from radiologic scans, often in conjunction with machine learning algorithms to phenotype disease appearance, prognosticate disease outcome, and predict treatment response. However, variance in CT scanner acquisition parameters, such as convolution kernels or pixel spacing, can impact radiomics texture feature values. PURPOSE: The extent to which the parameters influence radiomics features continues to be an active area of investigation. In this study, we describe a novel approach, Acquisition Impact on Radiomics Estimation (AcquIRE), to rank the impact of CT acquisition parameters on radiomic texture features. METHODS: In this work, we used three chest CT imaging datasets (n = 749 patients) from nine sites comprising: i) lung granulomas and adenocarcinomas (D1) (10 and 52 patients, respectively); ii) minimal and frank invasive adenocarcinoma (D2) (74 and 145 patients); and iii) early-stage NSCLC patients (D3) (315 patients). Datasets D2 and D3 were collected from four sites each, and D1 from a single site. For each patient, 744 texture features and nine acquisition parameters were extracted and utilized to evaluate which parameters impact radiomic features the most. The AcquIRE method establishes a relative assessment between acquisition parameters and radiomic texture featuresa through the creation of a classification model, which is then utilized to assess the rank of the acquisition parameters. RESULTS: Across the use cases, CT software version and convolution kernel parameters were found to have the most variance. In D1, it was observed that the Haralick texture feature family was the least affected by variations in acquisition parameters, while the Gabor feature family was the most impacted. However, in datasets D2 and D3, the Gabor features were found to be the least affected. Our findings suggest that the impact on radiomic parameters is as much a function of the problem in question as it is acquisition parameters. CONCLUSIONS: The software version and convolution kernel parameters impacted the radiomics feature the most.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Estudos Retrospectivos , Radiômica , Tomografia Computadorizada por Raios X/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Adenocarcinoma/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia
13.
Commun Med (Lond) ; 4(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172536

RESUMO

BACKGROUND: The role of immune cells in collagen degradation within the tumor microenvironment (TME) is unclear. Immune cells, particularly tumor-infiltrating lymphocytes (TILs), are known to alter the extracellular matrix, affecting cancer progression and patient survival. However, the quantitative evaluation of the immune modulatory impact on collagen architecture within the TME remains limited. METHODS: We introduce CollaTIL, a computational pathology method that quantitatively characterizes the immune-collagen relationship within the TME of gynecologic cancers, including high-grade serous ovarian (HGSOC), cervical squamous cell carcinoma (CSCC), and endometrial carcinomas. CollaTIL aims to investigate immune modulatory impact on collagen architecture within the TME, aiming to uncover the interplay between the immune system and tumor progression. RESULTS: We observe that an increased immune infiltrate is associated with chaotic collagen architecture and higher entropy, while immune sparse TME exhibits ordered collagen and lower entropy. Importantly, CollaTIL-associated features that stratify disease risk are linked with gene signatures corresponding to TCA-Cycle in CSCC, and amino acid metabolism, and macrophages in HGSOC. CONCLUSIONS: CollaTIL uncovers a relationship between immune infiltration and collagen structure in the TME of gynecologic cancers. Integrating CollaTIL with genomic analysis offers promising opportunities for future therapeutic strategies and enhanced prognostic assessments in gynecologic oncology.


The role of cells that are part of our immune system in altering the structure of the protein collagen within cancers is not fully understood, particularly within cancers that affect women such as ovarian, cervical and uterine cancers. Here, we developed a computer-based method called CollaTIL to explore how immune cells influence collagen in these tumors and affect their growth. We found that a higher presence of immune cells leads to less organized collagen in the tumor. Conversely, when there are fewer immune cells, the collagen tends to be more structured. Additionally, CollaTIL identifies patterns that predict patient outcomes in these cancers. These findings not only enhance our understanding of tumor biology but also may be useful in helping clinicians to predict which patients are at risk of their disease progressing.

14.
Res Sq ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234757

RESUMO

Endometrial cancer (EC) disproportionately affects African American (AA) women in terms of progression and death. In our study, we sought to employ computerized image and bioinformatic analysis to tease out morphologic and molecular differences in EC between AA and European-American (EA) populations. We identified the differences in immune cell spatial patterns between AA and EA populations with markers of tumor biology, including histologic and molecular subtypes. The models performed best when they were trained and validated using data from the same population. Unsupervised clustering revealed a distinct association between immune cell features and known molecular subtypes of endometrial cancer that varied between AA and EA populations. Our genomic analysis revealed two distinct and novel gene sets with mutations associated with improved prognosis in AA and EA patients. Our study findings suggest the need for population-specific risk prediction models for women with endometrial cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA