Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488003

RESUMO

Wnts, cholesterol, and MAPK signaling are essential for development and adult homeostasis. Here, we report that fatty acid hydroxylase domain containing 2 (FAXDC2), a previously uncharacterized enzyme, functions as a methyl sterol oxidase catalyzing C4 demethylation in the Kandutsch-Russell branch of the cholesterol biosynthesis pathway. FAXDC2, a paralog of MSMO1, regulated the abundance of the specific C4-methyl sterols lophenol and dihydro-T-MAS. Highlighting its clinical relevance, FAXDC2 was repressed in Wnt/ß-catenin-high cancer xenografts, in a mouse genetic model of Wnt activation, and in human colorectal cancers. Moreover, in primary human colorectal cancers, the sterol lophenol, regulated by FAXDC2, accumulated in the cancerous tissues and not in adjacent normal tissues. FAXDC2 linked Wnts to RTK/MAPK signaling. Wnt inhibition drove increased recycling of RTKs and activation of the MAPK pathway, and this required FAXDC2. Blocking Wnt signaling in Wnt-high cancers caused both differentiation and senescence; and this was prevented by knockout of FAXDC2. Our data show the integration of 3 ancient pathways, Wnts, cholesterol synthesis, and RTK/MAPK signaling, in cellular proliferation and differentiation.


Assuntos
Neoplasias Colorretais , beta Catenina , Adulto , Humanos , Camundongos , Animais , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt , Proliferação de Células , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo
2.
J Clin Invest ; 132(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35536676

RESUMO

Wnt signaling regulates the balance between stemness and differentiation in multiple tissues and in cancer. RNF43-mutant pancreatic cancers are dependent on Wnt production, and pharmacologic blockade of the pathway, e.g., by PORCN inhibitors, leads to tumor differentiation. However, primary resistance to these inhibitors has been observed. To elucidate potential mechanisms, we performed in vivo CRISPR screens in PORCN inhibitor-sensitive RNF43-mutant pancreatic cancer xenografts. As expected, genes in the Wnt pathway whose loss conferred drug resistance were identified, including APC, AXIN1, and CTNNBIP1. Unexpectedly, the screen also identified the histone acetyltransferase EP300 (p300), but not its paralog, CREBBP (CBP). We found that EP300 is silenced due to genetic alterations in all the existing RNF43-mutant pancreatic cancer cell lines that are resistant to PORCN inhibitors. Mechanistically, loss of EP300 directly downregulated GATA6 expression, thereby silencing the GATA6-regulated differentiation program and leading to a phenotypic transition from the classical subtype to the dedifferentiated basal-like/squamous subtype of pancreatic cancer. EP300 mutation and loss of GATA6 function bypassed the antidifferentiation activity of Wnt signaling, rendering these cancer cells resistant to Wnt inhibition.


Assuntos
Neoplasias Pancreáticas , Aciltransferases/genética , Linhagem Celular Tumoral , Proteína p300 Associada a E1A/metabolismo , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Humanos , Proteínas de Membrana/genética , Mutação , Neoplasias Pancreáticas/patologia , Via de Sinalização Wnt , Neoplasias Pancreáticas
3.
Biochem Pharmacol ; 196: 114611, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34010597

RESUMO

Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.


Assuntos
Anticolesterolemiantes/uso terapêutico , Antineoplásicos/uso terapêutico , Colesterol/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Benzilaminas/farmacologia , Benzilaminas/uso terapêutico , Humanos , Lanosterol/análogos & derivados , Lanosterol/farmacologia , Lanosterol/uso terapêutico , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Tiofenos/farmacologia , Tiofenos/uso terapêutico
4.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33653688

RESUMO

The huge cadre of genes regulated by Myc has obstructed the identification of critical effectors that are essential for Myc-driven tumorigenesis. Here, we describe how only the lack of the receptor Fzd9, previously identified as a Myc transcriptional target, impairs sustained tumor expansion and ß-cell dedifferentiation in a mouse model of Myc-driven insulinoma, allows pancreatic islets to maintain their physiological structure and affects Myc-related global gene expression. Importantly, Wnt signaling inhibition in Fzd9-competent mice largely recapitulates the suppression of proliferation caused by Fzd9 deficiency upon Myc activation. Together, our results indicate that the Wnt signaling receptor Fzd9 is essential for Myc-induced tumorigenesis in pancreatic islets.


Assuntos
Adenoma de Células das Ilhotas Pancreáticas/fisiopatologia , Carcinogênese/metabolismo , Receptores Frizzled/metabolismo , Adenoma de Células das Ilhotas Pancreáticas/metabolismo , Animais , Movimento Celular , Proliferação de Células , Feminino , Receptores Frizzled/genética , Receptores Frizzled/fisiologia , Genes myc/genética , Genes myc/fisiologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
5.
EMBO Mol Med ; 13(4): e13349, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33660437

RESUMO

Wnt signaling maintains diverse adult stem cell compartments and is implicated in chemotherapy resistance in cancer. PORCN inhibitors that block Wnt secretion have proven effective in Wnt-addicted preclinical cancer models and are in clinical trials. In a survey for potential combination therapies, we found that Wnt inhibition synergizes with the PARP inhibitor olaparib in Wnt-addicted cancers. Mechanistically, we find that multiple genes in the homologous recombination and Fanconi anemia repair pathways, including BRCA1, FANCD2, and RAD51, are dependent on Wnt/ß-catenin signaling in Wnt-high cancers, and treatment with a PORCN inhibitor creates a BRCA-like state. This coherent regulation of DNA repair genes occurs in part via a Wnt/ß-catenin/MYBL2 axis. Importantly, this pathway also functions in intestinal crypts, where high expression of BRCA and Fanconi anemia genes is seen in intestinal stem cells, with further upregulation in Wnt-high APCmin mutant polyps. Our findings suggest a general paradigm that Wnt/ß-catenin signaling enhances DNA repair in stem cells and cancers to maintain genomic integrity. Conversely, interventions that block Wnt signaling may sensitize cancers to radiation and other DNA damaging agents.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Reparo do DNA , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Via de Sinalização Wnt
6.
Cancer Res ; 81(2): 464-475, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203702

RESUMO

Aberrant Wnt signaling drives a number of cancers through regulation of diverse downstream pathways. Wnt/ß-catenin signaling achieves this in part by increasing the expression of proto-oncogenes such as MYC and cyclins. However, global assessment of the Wnt-regulated transcriptome in vivo in genetically distinct cancers demonstrates that Wnt signaling suppresses the expression of as many genes as it activates. In this study, we examined the set of genes that are upregulated upon inhibition of Wnt signaling in Wnt-addicted pancreatic and colorectal cancer models. Decreasing Wnt signaling led to a marked increase in gene expression by activating ERK and JNK; these changes in gene expression could be mitigated in part by concurrent inhibition of MEK. These findings demonstrate that increased Wnt signaling in cancer represses MAPK activity, preventing RAS-mediated senescence while allowing cancer cells to proliferate. These results shift the paradigm from Wnt/ß-catenin primarily as an activator of transcription to a more nuanced view where Wnt/ß-catenin signaling drives both widespread gene repression and activation. SIGNIFICANCE: These findings show that Wnt/ß-catenin signaling causes widespread gene repression via inhibition of MAPK signaling, thus fine tuning the RAS-MAPK pathway to optimize proliferation in cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Quinases Ativadas por Mitógeno/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Células Tumorais Cultivadas , Proteína Wnt1/genética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
7.
Cancer Res ; 80(24): 5619-5632, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33067269

RESUMO

A subset of Wnt-addicted cancers are sensitive to targeted therapies that block Wnt secretion or receptor engagement. RNF43 loss-of-function (LOF) mutations that increase cell surface Wnt receptor abundance cause sensitivity to Wnt inhibitors. However, it is not clear which of the clinically identified RNF43 mutations affect its function in vivo. We assayed 119 missense and 45 truncating RNF43 mutations found in human cancers using a combination of cell-based reporter assays, genome editing, flow cytometry, and immunofluorescence microscopy. Five common germline variants of RNF43 exhibited wild-type activity. Cancer-associated missense mutations in the RING ubiquitin ligase domain and a subset of mutations in the extracellular domain hyperactivate Wnt/ß-catenin signaling through formation of inactive dimers with endogenous RNF43 or ZNRF3. RNF43 C-terminal truncation mutants, including the common G659fs mutant are LOF specifically when endogenous mutations are examined, unlike their behavior in transient transfection assays. Patient-derived xenografts and cell lines with C-terminal truncations showed increased cell surface Frizzled and Wnt/ß-catenin signaling and were responsive to porcupine (PORCN) inhibition in vivo, providing clear evidence of RNF43 impairment. Our study provides potential guidelines for patient assignment, as virtually all RNF43 nonsense and frameshift mutations, including those in the C-terminal domain and a large number of patient-associated missense mutations in the RING domain and N-terminal region compromise its activity, and therefore predict response to upstream Wnt inhibitors in cancers without microsatellite instability. This study expands the landscape of actionable RNF43 mutations, extending the benefit of these therapies to additional patients. SIGNIFICANCE: Systematic examination of patient-derived RNF43 mutations identifies rules to guide patient selection, including that truncation or point mutations in well-defined functional domains sensitize cancers to PORCN inhibitors.


Assuntos
Mutação , Neoplasias/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Endocitose/fisiologia , Receptores Frizzled/metabolismo , Regulação Neoplásica da Expressão Gênica , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Proteínas de Membrana/antagonistas & inibidores , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Multimerização Proteica , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Genome Med ; 12(1): 89, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092630

RESUMO

BACKGROUND: Wnt signaling is an evolutionarily conserved developmental pathway that is frequently hyperactivated in cancer. While multiple protein-coding genes regulated by Wnt signaling are known, the functional lncRNAs regulated by Wnt signaling have not been systematically characterized. METHODS: We comprehensively mapped Wnt-regulated lncRNAs from an orthotopic Wnt-addicted pancreatic cancer model and examined the response of lncRNAs to Wnt inhibition between in vivo and in vitro cancer models. We further annotated and characterized these Wnt-regulated lncRNAs using existing genomic classifications (using data from FANTOM5) in the context of Wnt signaling and inferred their role in cancer pathogenesis (using GWAS and expression data from the TCGA). To functionally validate Wnt-regulated lncRNAs, we performed CRISPRi screens to assess their role in cancer cell proliferation both in vivo and in vitro. RESULTS: We identified 3633 lncRNAs, of which 1503 were regulated by Wnt signaling in an orthotopic Wnt-addicted pancreatic cancer model. These lncRNAs were much more sensitive to changes in Wnt signaling in xenografts than in cultured cells. Our analysis suggested that Wnt signaling inhibition could influence the co-expression relationship of Wnt-regulated lncRNAs and their eQTL-linked protein-coding genes. Wnt-regulated lncRNAs were also implicated in specific gene networks involved in distinct biological processes that contribute to the pathogenesis of cancers. Consistent with previous genome-wide lncRNA CRISPRi screens, around 1% (13/1503) of the Wnt-regulated lncRNAs were found to modify cancer cell growth in vitro. This included CCAT1 and LINC00263, previously reported to regulate cancer growth. Using an in vivo CRISPRi screen, we doubled the discovery rate, identifying twice as many Wnt-regulated lncRNAs (25/1503) that had a functional effect on cancer cell growth. CONCLUSIONS: Our study demonstrates the value of studying lncRNA functions in vivo, provides a valuable resource of lncRNAs regulated by Wnt signaling, and establishes a framework for systematic discovery of functional lncRNAs.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , RNA Longo não Codificante , Proteínas Wnt/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biologia Computacional/métodos , Edição de Genes , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Xenoenxertos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fases de Leitura Aberta , Locos de Características Quantitativas , RNA Guia de Cinetoplastídeos , Via de Sinalização Wnt
9.
Cancer Metastasis Rev ; 39(3): 625-645, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32385713

RESUMO

Since the discovery of the first mammalian Wnt proto-oncogene in virus-induced mouse mammary tumors almost four decades ago, Wnt signaling pathway and its involvement in cancers have been extensively investigated. Activation of this evolutionarily conserved pathway promotes cancer development via diverse mechanisms. Cancer is a complex disease and one outstanding conceptual framework for understanding its biology is the "Hallmarks of Cancer". In this review, we focus on the involvement of Wnt signaling in the ten hallmarks of human cancer. These widespread roles of Wnt signaling in human cancers highlight the importance and feasibility of targeting this signaling pathway for cancer treatment.


Assuntos
Neoplasias/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Animais , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proto-Oncogene Mas
10.
Kidney Int ; 96(6): 1308-1319, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585741

RESUMO

Wnt/ß-catenin signaling is essential in the pathogenesis of renal fibrosis. We previously reported inhibition of the Wnt O-acyl transferase porcupine, required for Wnt secretion, dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Here, we investigated the tissue-specific contributions of porcupine to renal fibrosis and inflammation in ureteral obstruction using mice with porcupine deletion restricted to the kidney tubular epithelium or infiltrating myeloid cells. Obstruction of the ureter induced the renal mRNA expression of porcupine and downstream targets, ß-catenin, T-cell factor, and lymphoid enhancer factor in wild type mice. Renal tubular specific deficiency of porcupine reduced the expression of collagen I and other fibrosis markers in the obstructed kidney. Moreover, kidneys from obstructed mice with tubule-specific porcupine deficiency had reduced macrophage accumulation with attenuated expression of myeloid cytokine and chemokine mRNA. In co-culture with activated macrophages, renal tubular cells from tubular-specific porcupine knockout mice had blunted induction of fibrosis mediators compared with wild type renal tubular cells. In contrast, macrophages from macrophage-specific porcupine deficient mice in co-culture with wild type renal tubular cells had markedly enhanced expression of pro-fibrotic cytokines compared to wild type macrophages. Consequently, porcupine deletion specifically within macrophages augmented renal scar formation following ureteral obstruction. Thus, our experiments suggest a benefit of interrupting Wnt secretion specifically within the kidney epithelium while preserving Wnt O-acylation in infiltrating myeloid cells during renal fibrogenesis.


Assuntos
Aciltransferases/metabolismo , Proteínas de Membrana/metabolismo , Nefroesclerose/metabolismo , Via de Sinalização Wnt , Animais , Quimiocinas/metabolismo , Feminino , Fibrose , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Nefroesclerose/etiologia , Obstrução Ureteral
11.
RNA ; 25(12): 1696-1713, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31506381

RESUMO

Differential gene isoform expression is a ubiquitous mechanism to enhance proteome diversity and maintain cell homeostasis. Mechanisms such as splicing that drive gene isoform variability are highly dynamic and responsive to changes in cell signaling pathways. Wnt/ß-catenin signaling has profound effects on cell activity and cell fate and is known to modify several splicing events by altering the expression of individual splicing factors. However, a global assessment of how extensively Wnt signaling regulates splicing and other mechanisms that determine mRNA isoform composition in cancer is lacking. We used deep time-resolved RNA-seq in two independent in vivo Wnt-addicted tumor models during treatment with the potent Wnt inhibitor ETC-159 and examined Wnt regulated splicing events and splicing regulators. We found 1025 genes that underwent Wnt regulated variable exon usage leading to isoform expression changes. This was accompanied by extensive Wnt regulated changes in the expression of splicing regulators. Many of these Wnt regulated events were conserved in multiple human cancers, and many were linked to previously defined cancer-associated splicing quantitative trait loci. This suggests that the Wnt regulated splicing events are components of fundamental oncogenic processes. These findings demonstrate the wide-ranging effects of Wnt signaling on the isoform composition of the cell and provides an extensive resource of expression changes of splicing regulators and gene isoforms regulated by Wnt signaling.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Via de Sinalização Wnt , Processamento Alternativo , Biomarcadores , Linhagem Celular Tumoral , Éxons , Perfilação da Expressão Gênica , Humanos , Neoplasias/patologia , Isoformas de Proteínas , Locos de Características Quantitativas , RNA Mensageiro/genética
12.
Oncogene ; 38(40): 6662-6677, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31391551

RESUMO

Pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) is aggressive and lethal. Although there is an urgent need for effective therapeutics in treating pancreatic cancer, none of the targeted therapies tested in clinical trials to date significantly improve its outcome. PORCN inhibitors show efficacy in preclinical models of Wnt-addicted cancers, including RNF43-mutant pancreatic cancers and have advanced to clinical trials. In this study, we aimed to develop drug combination strategies to further enhance the therapeutic efficacy of the PORCN inhibitor ETC-159. To identify additional druggable vulnerabilities in Wnt-driven pancreatic cancers, we performed an in vivo CRISPR loss-of-function screen. CTNNB1, KRAS, and MYC were reidentified as key oncogenic drivers. Notably, glucose metabolism pathway genes were important in vivo but less so in vitro. Knockout of multiple genes regulating PI3K/mTOR signaling impacted the growth of Wnt-driven pancreatic cancer cells in vivo. Importantly, multiple PI3K/mTOR pathway inhibitors in combination with ETC-159 synergistically suppressed the growth of multiple Wnt-addicted cancer cell lines in soft agar. Furthermore, the combination of the PORCN inhibitor ETC-159 and the pan-PI3K inhibitor GDC-0941 potently suppressed the in vivo growth of RNF43-mutant pancreatic cancer xenografts. This was largely due to enhanced suppressive effects on both cell proliferation and glucose metabolism. These findings demonstrate that dual PORCN and PI3K/mTOR inhibition is a potential strategy for treating Wnt-driven pancreatic cancers.


Assuntos
Aciltransferases/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Membrana/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Serina-Treonina Quinases TOR/genética , Proteínas Wnt/metabolismo , Aciltransferases/metabolismo , Animais , Sistemas CRISPR-Cas , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glucose/metabolismo , Xenoenxertos , Humanos , Mutação com Perda de Função , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo
13.
J Clin Invest ; 128(12): 5620-5633, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30300142

RESUMO

Activating mutations in the Wnt pathway drive a variety of cancers, but the specific targets and pathways activated by Wnt ligands are not fully understood. To bridge this knowledge gap, we performed a comprehensive time-course analysis of Wnt-dependent signaling pathways in an orthotopic model of Wnt-addicted pancreatic cancer, using a porcupine (PORCN) inhibitor currently in clinical trials, and validated key results in additional Wnt-addicted models. The temporal analysis of the drug-perturbed transcriptome demonstrated direct and indirect regulation of more than 3,500 Wnt-activated genes (23% of the transcriptome). Regulation was both via Wnt/ß-catenin and through the modulation of protein abundance of important transcription factors, including MYC, via Wnt-dependent stabilization of proteins (Wnt/STOP). Our study identifies a central role of Wnt/ß-catenin and Wnt/STOP signaling in controlling ribosome biogenesis, a key driver of cancer proliferation.


Assuntos
Neoplasias Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ribossomos/metabolismo , Transcriptoma , Via de Sinalização Wnt , Aciltransferases/antagonistas & inibidores , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Ribossomos/genética , Ribossomos/patologia
14.
Dev Cell ; 46(6): 681-695.e5, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30146480

RESUMO

The gut absorbs dietary nutrients and provides a barrier to xenobiotics and microbiome metabolites. To cope with toxin exposures, the intestinal epithelium is one of the most rapidly proliferating tissues in the body. The stem cell niche supplies essential signaling factors including Wnt proteins secreted by subepithelial myofibroblasts. Unexpectedly, therapeutically effective doses of orally administered PORCN inhibitors that block all Wnt secretion do not affect intestinal homeostasis. We find that intestinal myofibroblasts are intrinsically resistant to multiple xenobiotics, including PORCN inhibitors and the anthracycline antibiotic doxorubicin. These myofibroblasts have high expression of a subset of drug transporters; knockout of Mrp1/Abcc1 enhances drug sensitivity. Tamoxifen administration to Rosa26CreERT2;mT/mG mice visually highlights the drug-resistant intestinal stromal compartment and identifies small populations of drug-resistant cells in lung, kidney, and pancreatic islets. Xenobiotic resistance of the Wnt-producing myofibroblasts can protect the intestinal stem cell niche in the face of an unpredictable environment.


Assuntos
Aciltransferases/fisiologia , Proliferação de Células/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Mucosa Intestinal/efeitos dos fármacos , Proteínas de Membrana/fisiologia , Miofibroblastos/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Hormonais/farmacologia , Broncodilatadores/farmacologia , Células Cultivadas , Doxorrubicina/farmacologia , Feminino , Homeostase , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Propionatos/farmacologia , Quinolinas/farmacologia , Transdução de Sinais , Tamoxifeno/farmacologia , Proteínas Wnt/metabolismo
15.
Bone Res ; 6: 17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844946

RESUMO

Dysregulated Wnt signaling is associated with the pathogenesis of cancers, fibrosis, and vascular diseases. Inhibition of Wnt signaling has shown efficacy in various pre-clinical models of these disorders. One of the key challenges in developing targeted anti-cancer drugs is to balance efficacy with on-target toxicity. Given the crucial role Wnts play in the differentiation of osteoblasts and osteoclasts, acute inhibition of Wnt signaling is likely to affect bone homeostasis. In this study, we evaluated the skeletal effect of small molecule inhibitor of an o-acyl transferase porcupine (PORCN) that prevents Wnt signaling by blocking the secretion of all Wnts. Micro-computed tomography and histomorphometric evaluation revealed that the bones of mice treated with two structurally distinct PORCN inhibitors LGK974 and ETC-1922159 (ETC-159) had loss-of-bone volume and density within 4 weeks of exposure. This decreased bone mass was associated with a significant increase in adipocytes within the bone marrow. Notably, simultaneous administration of a clinically approved anti-resorptive, alendronate, a member of the bisphosphonate family, mitigated loss-of-bone mass seen upon ETC-159 treatment by regulating activity of osteoclasts and blocking accumulation of bone marrow adipocytes. Our results support the addition of bone protective agents when treating patients with PORCN inhibitors. Mitigation of bone toxicity can extend the therapeutic utility of Wnt pathway inhibitors.

16.
J Med Chem ; 60(15): 6678-6692, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28671458

RESUMO

Porcupine is an O-acyltransferase that regulates Wnt secretion. Inhibiting porcupine may block the Wnt pathway which is often dysregulated in various cancers. Consequently porcupine inhibitors are thought to be promising oncology therapeutics. A high throughput screen against porcupine revealed several potent hits that were confirmed to be Wnt pathway inhibitors in secondary assays. We developed a pharmacophore model and used the putative bioactive conformation of a xanthine inhibitor for scaffold hopping. The resulting maleimide scaffold was optimized to subnanomolar potency while retaining good physical druglike properties. A preclinical development candidate was selected for which extensive in vitro and in vivo profiling is reported.


Assuntos
Aciltransferases/antagonistas & inibidores , Antineoplásicos/farmacologia , Maleimidas/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Piridazinas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Inibidores do Citocromo P-450 CYP1A2/administração & dosagem , Inibidores do Citocromo P-450 CYP1A2/síntese química , Inibidores do Citocromo P-450 CYP1A2/farmacocinética , Inibidores do Citocromo P-450 CYP1A2/farmacologia , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Inibidores do Citocromo P-450 CYP2D6/síntese química , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Feminino , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Maleimidas/administração & dosagem , Maleimidas/síntese química , Maleimidas/farmacocinética , Camundongos Endogâmicos BALB C , Camundongos Nus , Microssomos Hepáticos/metabolismo , Piridazinas/administração & dosagem , Piridazinas/síntese química , Piridazinas/farmacocinética , Ratos , Relação Estrutura-Atividade , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Proc Natl Acad Sci U S A ; 113(21): E2945-54, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162353

RESUMO

The Wnt signaling pathways play pivotal roles in carcinogenesis. Modulation of the cell-surface abundance of Wnt receptors is emerging as an important mechanism for regulating sensitivity to Wnt ligands. Endocytosis and degradation of the Wnt receptors Frizzled (Fzd) and lipoprotein-related protein 6 (LRP6) are regulated by the E3 ubiquitin ligases zinc and ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are disrupted in cancer. In a genome-wide small interfering RNA screen, we identified the deubiquitylase ubiquitin-specific protease 6 (USP6) as a potent activator of Wnt signaling. USP6 enhances Wnt signaling by deubiquitylating Fzds, thereby increasing their cell-surface abundance. Chromosomal translocations in nodular fasciitis result in USP6 overexpression, leading to transcriptional activation of the Wnt/ß-catenin pathway. Inhibition of Wnt signaling using Dickkopf-1 (DKK1) or a Porcupine (PORCN) inhibitor significantly decreased the growth of USP6-driven xenograft tumors, indicating that Wnt signaling is a key target of USP6 during tumorigenesis. Our study defines an additional route to ectopic Wnt pathway activation in human disease, and identifies a potential approach to modulate Wnt signaling for therapeutic benefit.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Receptores Frizzled/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Via de Sinalização Wnt , Animais , Proteínas de Ligação a DNA/genética , Receptores Frizzled/genética , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Neoplasias Experimentais/genética , Proteínas Oncogênicas/genética , Proteínas Proto-Oncogênicas/genética , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
18.
Oncotarget ; 7(11): 12386-92, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26848981

RESUMO

Activation of Wnt signaling due to Wnt overexpression or mutations of Wnt pathway components is associated with various cancers. Blocking Wnt secretion by inhibiting PORCN enzymatic activity has shown efficacy in a subset of cancers with elevated Wnt signaling. Predicting response to upstream Wnt inhibitors and monitoring response to therapeutics is challenging due to the paucity of well-defined biomarkers. In this study we identify Notum as a potential biomarker for Wnt driven cancers and show that coordinate regulation of NOTUM and AXIN2 expression may be a useful predictor of response to PORCN inhibitors. Most importantly, as NOTUM is a secreted protein and its levels in blood correlate with tumor growth, it has potential as a pharmacodynamic biomarker for PORCN and other Wnt pathway inhibitors.


Assuntos
Biomarcadores Tumorais/biossíntese , Esterases/biossíntese , Fibrossarcoma/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Animais , Proteína Axina/biossíntese , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Fibrossarcoma/metabolismo , Xenoenxertos , Humanos , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Transfecção
19.
J Med Chem ; 58(15): 5889-99, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26110200

RESUMO

Wnt proteins regulate various cellular functions and serve distinct roles in normal development throughout life. Wnt signaling is dysregulated in various diseases including cancers. Porcupine (PORCN) is a membrane-bound O-acyltransferase that palmitoleates the Wnts and hence is essential for their secretion and function. The inhibition of PORCN could serve as a therapeutic approach for the treatment of a number of Wnt-dependent cancers. Herein, we describe the identification of a Wnt secretion inhibitor from cellular high throughput screening. Classical SAR based cellular optimization provided us with a PORCN inhibitor with nanomolar activity and excellent bioavailability that demonstrated efficacy in a Wnt-driven murine tumor model. Finally, we also discovered that enantiomeric PORCN inhibitors show very different activity in our reporter assay, suggesting that such compounds may be useful for mode of action studies on the PORCN O-acyltransferase.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Aciltransferases , Descoberta de Drogas , Inibidores Enzimáticos/química , Modelos Moleculares , Relação Estrutura-Atividade , Via de Sinalização Wnt
20.
Mol Cancer Ther ; 14(5): 1087-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25901018

RESUMO

Wnt signaling is dysregulated in many cancers and is therefore an attractive therapeutic target. The focus of drug development has recently shifted away from downstream inhibitors of ß-catenin. Active inhibitors of Wnt secretion and Wnt/receptor interactions have been developed that are now entering clinical trials. Such agents include inhibitors of Wnt secretion, as well as recombinant proteins that minimize Wnt-Frizzled interactions. These new therapies arrive together with the recent insight that cancer-specific upregulation of Wnt receptors at the cell surface regulates cellular sensitivity to Wnts. Loss-of-function mutations in RNF43 or ZNRF3 and gain-of-function chromosome translocations involving RSPO2 and RSPO3 are surprisingly common and markedly increase Wnt/ß-catenin signaling in response to secreted Wnts. These mutations may be predictive biomarkers to select patients responsive to newly developed upstream Wnt inhibitors.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Neoplasias/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Ensaios Clínicos como Assunto , Desenho de Fármacos , Humanos , Mutação , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA