Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Microbiol ; 57(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511335

RESUMO

Pathogen cell-free DNA (pcfDNA) in blood and urine is an attractive biomarker; however, the impact of preanalytical factors is not well understood. Blood and urine samples from healthy donors spiked with cfDNA from Mycobacterium tuberculosis, Salmonella enterica, Aspergillus fumigatus, and Epstein-Barr virus (EBV) and samples from tuberculosis patients were used to evaluate the impact of blood collection tube, urine preservative, processing delay, processing method, freezing and thawing, and sample volume on pcfDNA. The PCR cycle threshold (CT ) was used to measure amplifiable cfDNA. In spiked samples, the median CT values for M. tuberculosis, S. enterica, and EBV cfDNA were significantly lower in blood collected in K2EDTA tubes than those in Streck and PAXgene blood collection tubes, and they were was significantly lower in urine preserved with EDTA (EDTA-urine) than in urine preserved with Streck reagent (Streck-urine). Blood and urine samples from TB patients preserved with K2EDTA and Tris-EDTA, respectively, showed significantly lower median M. tuberculosisCT values than with the Streck blood collection tube and Streck urine preservative. Processing delay increased the median pathogen CT values for Streck and PAXgene but not K2EDTA blood samples and for urine preserved with Streck reagent but not EDTA. Double-spin compared with single-spin plasma separation increased the median pathogen CT regardless of blood collection tube. No differences were observed between whole urine and supernatant and between fresh and thawed plasma and urine after 24 weeks at -80°C. Larger plasma and urine volumes in contrived and patient samples showed a significantly lower median M. tuberculosisCT These findings suggest that large-volume single-spin K2EDTA-plasma and EDTA-whole urine with up to a 24-h processing delay may optimize pcfDNA detection.


Assuntos
Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/urina , DNA Bacteriano/isolamento & purificação , DNA Fúngico/isolamento & purificação , DNA Viral/isolamento & purificação , Adulto , Bactérias , Coleta de Amostras Sanguíneas , Líquidos Corporais/microbiologia , Líquidos Corporais/virologia , DNA Bacteriano/sangue , DNA Bacteriano/urina , DNA Fúngico/sangue , DNA Fúngico/urina , DNA Viral/sangue , DNA Viral/urina , Feminino , Fungos , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Manejo de Espécimes , Vírus , Adulto Jovem
2.
PLoS Negl Trop Dis ; 11(12): e0006142, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29287072

RESUMO

We investigated alternatives to whole blood for blood feeding of mosquitoes with a focus on improved stability and compatibility with mass rearing programs. In contrast to whole blood, an artificial blood diet of ATP-supplemented plasma was effective in maintaining mosquito populations and was compatible with storage for extended periods refrigerated, frozen, and as a lyophilized powder. The plasma ATP diet supported rearing of both Anopheles and Aedes mosquitoes. It was also effective in rearing Wolbachia-infected Aedes mosquitoes, suggesting compatibility with vector control efforts.


Assuntos
Trifosfato de Adenosina/farmacologia , Aedes/fisiologia , Anopheles/fisiologia , Insetos Vetores/fisiologia , Plasma/química , Wolbachia/fisiologia , Trifosfato de Adenosina/sangue , Aedes/efeitos dos fármacos , Aedes/microbiologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/microbiologia , Substitutos Sanguíneos/química , Dieta , Suplementos Nutricionais , Feminino , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/microbiologia , Masculino , Óvulo , Controle Biológico de Vetores , Reprodução/efeitos dos fármacos
3.
Bioorg Med Chem ; 23(17): 5999-6013, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26190462

RESUMO

Autotaxin (ATX) is an enzyme discovered in the conditioned medium of cultured melanoma cells and identified as a protein that strongly stimulates motility. This unique ectonucleotide pyrophosphatase and phosphodiesterase facilitates the removal of a choline headgroup from lysophosphatidylcholine (LPC) to yield lysophosphatidic acid (LPA), which is a potent lipid stimulator of tumorigenesis. Thus, ATX has received renewed attention because it has a prominent role in malignant progression with significant translational potential. Specifically, we sought to develop active site-targeted irreversible inhibitors as anti-cancer agents. Herein we describe the synthesis and biological activity of an LPC-mimetic electrophilic affinity label that targets the active site of ATX, which has a critical threonine residue that acts as a nucleophile in the lysophospholipase D reaction to liberate choline. We synthesized a set of quaternary ammonium derivative-containing vinyl sulfone analogs of LPC that function as irreversible inhibitors of ATX and inactivate the enzyme. The analogs were tested in cell viability assays using multiple cancer cell lines. The IC50 values ranged from 6.74 to 0.39 µM, consistent with a Ki of 3.50 µM for inhibition of ATX by the C16H33 vinyl sulfone analog CVS-16 (10b). A phenyl vinyl sulfone control compound, PVS-16, lacking the choline-like quaternary ammonium mimicking head group moiety, had little effect on cell viability and did not inhibit ATX. Most importantly, CVS-16 (10b) significantly inhibited melanoma progression in an in vivo tumor model by preventing angiogenesis. Taken together, this suggests that CVS-16 (10b) is a potent and irreversible ATX inhibitor with significant biological activity both in vitro and in vivo.


Assuntos
Lisofosfatidilcolinas/uso terapêutico , Melanoma/tratamento farmacológico , Sulfonas/uso terapêutico , Linhagem Celular Tumoral , Humanos , Lisofosfatidilcolinas/administração & dosagem , Neovascularização Patológica , Sulfonas/administração & dosagem
4.
PLoS One ; 8(11): e79065, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278115

RESUMO

Autotaxin (ATX), an autocrine motility factor that is highly upregulated in metastatic cancer, is a lysophospholipase D enzyme that produces the lipid second messenger lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC). Dysregulation of the lysolipid signaling pathway is central to the pathophysiology of numerous cancers, idiopathic pulmonary fibrosis, rheumatoid arthritis, and other inflammatory diseases. Consequently, the ATX/LPA pathway has emerged as an important source of biomarkers and therapeutic targets. Herein we describe development and validation of a fluorogenic analog of LPC (AR-2) that enables visualization of ATX activity in vivo. AR-2 exhibits minimal fluorescence until it is activated by ATX, which substantially increases fluorescence in the near-infrared (NIR) region, the optimal spectral window for in vivo imaging. In mice with orthotopic ATX-expressing breast cancer tumors, ATX activated AR-2 fluorescence. Administration of AR-2 to tumor-bearing mice showed high fluorescence in the tumor and low fluorescence in most healthy tissues with tumor fluorescence correlated with ATX levels. Pretreatment of mice with an ATX inhibitor selectively decreased fluorescence in the tumor. Together these data suggest that fluorescence directly correlates with ATX activity and its tissue expression. The data show that AR-2 is a non-invasive and selective tool that enables visualization and quantitation of ATX-expressing tumors and monitoring ATX activity in vivo.


Assuntos
Diester Fosfórico Hidrolases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Lisofosfatidilcolinas/química , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell ; 153(6): 1354-65, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23746846

RESUMO

The GroEL/ES chaperonin system is required for the assisted folding of many proteins. How these substrate proteins are encapsulated within the GroEL-GroES cavity is poorly understood. Using symmetry-free, single-particle cryo-electron microscopy, we have characterized a chemically modified mutant of GroEL (EL43Py) that is trapped at a normally transient stage of substrate protein encapsulation. We show that the symmetric pattern of the GroEL subunits is broken as the GroEL cis-ring apical domains reorient to accommodate the simultaneous binding of GroES and an incompletely folded substrate protein (RuBisCO). The collapsed RuBisCO folding intermediate binds to the lower segment of two apical domains, as well as to the normally unstructured GroEL C-terminal tails. A comparative structural analysis suggests that the allosteric transitions leading to substrate protein release and folding involve concerted shifts of GroES and the GroEL apical domains and C-terminal tails.


Assuntos
Chaperonina 10/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Dobramento de Proteína , Ribulose-Bifosfato Carboxilase/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação Proteica , Ribulose-Bifosfato Carboxilase/química
6.
Bioorg Med Chem Lett ; 21(17): 5098-101, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21489790

RESUMO

Autotaxin (ATX) is an attractive target for the anticancer therapeutics that inhibits angiogenesis, invasion and migration. ATX is an extracellular lysophospholipase D that hydrolyzes lysophosphatidylcholine to form the bioactive lipid lysophosphatidic acid. The aromatic phosphonate S32826 was the first described nanomolar inhibitor of ATX. However, the tridecylamide substituent on aromatic ring contributed to its poor solubility and bioavailability, severely limiting its utility in vivo. cLogP calculations revealed that the lipophilicity of S32826 could be lowered by shortening its hydrophobic chain and by introducing substituents alpha to the phosphonate. Herein, we describe the synthesis of a small set of α-substituted phosphonate analogs of S32826, and we show that shortening the chain and adding α-halo or α-hydroxy substituents increased solubility; however, ATX inhibition was reduced by most substitutions. An optimal compound was identified for examination of biological effects of ATX inhibition in vivo.


Assuntos
Organofosfonatos/farmacologia , Diester Fosfórico Hidrolases/efeitos dos fármacos , Disponibilidade Biológica , Organofosfonatos/farmacocinética , Diester Fosfórico Hidrolases/metabolismo
7.
Mol Cancer ; 9: 140, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20529378

RESUMO

BACKGROUND: Although the incidence of melanoma in the U.S. is rising faster than any other cancer, the FDA-approved chemotherapies lack efficacy for advanced disease, which results in poor overall survival. Lysophosphatidic acid (LPA), autotaxin (ATX), the enzyme that produces LPA, and the LPA receptors represent an emerging group of therapeutic targets in cancer, although it is not known which of these is most effective. RESULTS: Herein we demonstrate that thio-ccPA 18:1, a stabilized phosphonothionate analogue of carba cyclic phosphatidic acid, ATX inhibitor and LPA1/3 receptor antagonist, induced a marked reduction in the viability of B16F10 metastatic melanoma cells compared with PBS-treated control by 80-100%. Exogenous LPA 18:1 or D-sn-1-O-oleoyl-2-O-methylglyceryl-3-phosphothioate did not reverse the effect of thio-ccPA 18:1. The reduction in viability mediated by thio-ccPA 18:1 was also observed in A375 and MeWo melanoma cell lines, suggesting that the effects are generalizable. Interestingly, siRNA to LPA3 (siLPA3) but not other LPA receptors recapitulated the effects of thio-ccPA 18:1 on viability, suggesting that inhibition of the LPA3 receptor is an important dualistic function of the compound. In addition, siLPA3 reduced proliferation, plasma membrane integrity and altered morphology of A375 cells. Another experimental compound designed to antagonize the LPA1/3 receptors significantly reduced viability in MeWo cells, which predominantly express the LPA3 receptor. CONCLUSIONS: Thus the ability of thio-ccPA 18:1 to inhibit the LPA3 receptor and ATX are key to its molecular mechanism, particularly in melanoma cells that predominantly express the LPA3 receptor. These observations necessitate further exploration and exploitation of these targets in melanoma.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Ácidos Fosfatídicos/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica , Humanos , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Complexos Multienzimáticos/antagonistas & inibidores , Fosfodiesterase I/antagonistas & inibidores , Diester Fosfórico Hidrolases , Pirofosfatases/antagonistas & inibidores , RNA Interferente Pequeno , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Biol Chem ; 283(46): 32003-13, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18782766

RESUMO

The folding of many proteins depends on the assistance of chaperonins like GroEL and GroES and involves the enclosure of substrate proteins inside an internal cavity that is formed when GroES binds to GroEL in the presence of ATP. Precisely how assembly of the GroEL-GroES complex leads to substrate protein encapsulation and folding remains poorly understood. Here we use a chemically modified mutant of GroEL (EL43Py) to uncouple substrate protein encapsulation from release and folding. Although EL43Py correctly initiates a substrate protein encapsulation reaction, this mutant stalls in an intermediate allosteric state of the GroEL ring, which is essential for both GroES binding and the forced unfolding of the substrate protein. This intermediate conformation of the GroEL ring possesses simultaneously high affinity for both GroES and non-native substrate protein, thus preventing escape of the substrate protein while GroES binding and substrate protein compaction takes place. Strikingly, assembly of the folding-active GroEL-GroES complex appears to involve a strategic delay in ATP hydrolysis that is coupled to disassembly of the old, ADP-bound GroEL-GroES complex on the opposite ring.


Assuntos
Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Dobramento de Proteína , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Chaperonina 10/genética , Chaperonina 60/genética , Hidrólise , Mutação/genética , Ligação Proteica , Especificidade por Substrato
9.
Nat Struct Mol Biol ; 15(3): 303-11, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18311152

RESUMO

Many proteins cannot fold without the assistance of chaperonin machines like GroEL and GroES. The nature of this assistance, however, remains poorly understood. Here we demonstrate that unfolding of a substrate protein by GroEL enhances protein folding. We first show that capture of a protein on the open ring of a GroEL-ADP-GroES complex, GroEL's physiological acceptor state for non-native proteins in vivo, leaves the substrate protein in an unexpectedly compact state. Subsequent binding of ATP to the same GroEL ring causes rapid, forced unfolding of the substrate protein. Notably, the fraction of the substrate protein that commits to the native state following GroES binding and protein release into the GroEL-GroES cavity is proportional to the extent of substrate-protein unfolding. Forced protein unfolding is thus a central component of the multilayered stimulatory mechanism used by GroEL to drive protein folding.


Assuntos
Chaperonina 60/química , Chaperonina 60/metabolismo , Dobramento de Proteína , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Apoproteínas/metabolismo , Cisteína , Modelos Biológicos , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Conformação Proteica , Ribulose-Bifosfato Carboxilase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA