Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37531237

RESUMO

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína Fosfatase 1/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Glucose , Glicogênio , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/complicações
2.
Artigo em Inglês | MEDLINE | ID: mdl-37230770

RESUMO

Pathogenic variants in MECOM, a gene critical to the self-renewal and proliferation of hematopoietic stem cells, are known to cause a rare bone marrow failure syndrome associated with amegakaryocytic thrombocytopenia and bilateral radioulnar synostosis known as RUSAT2. However, the spectrum of disease seen with causal variants in MECOM is broad, ranging from mildly affected adults to fetal loss. We report two cases of infants born preterm who presented at birth with symptoms of bone marrow failure including severe anemia, hydrops, and petechial hemorrhages; radioulnar synostosis was not observed in either patient, and, unfortunately, neither infant survived. In both cases, genomic sequencing revealed de novo variants in MECOM considered to be responsible for their severe presentations. These cases add to the growing body of literature that describe MECOM-associated disease, particularly MECOM as a cause of fetal hydrops due to bone marrow failure in utero. Furthermore, they support the use of a broad sequencing approach for perinatal diagnosis, as MECOM is absent from available targeted gene panels for hydrops, and highlight the importance of postmortem genomic investigation.


Assuntos
Anemia , Hidropisia Fetal , Recém-Nascido , Gravidez , Lactente , Feminino , Adulto , Humanos , Hidropisia Fetal/genética , Hidropisia Fetal/diagnóstico , Fatores de Transcrição , Transtornos da Insuficiência da Medula Óssea/complicações , Proteína do Locus do Complexo MDS1 e EVI1
3.
Eur J Hum Genet ; 30(9): 1083-1087, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35768521

RESUMO

Pathogenic variants in the SRCAP (SNF2-related CREBBP activator protein) gene, which encodes a chromatin-remodeling ATPase, cause neurodevelopmental disorders including Floating Harbor syndrome (FLHS). Here, we report the discovery of a de novo transposon insertion in SRCAP exon 13 from trio genome sequencing in a 28-year-old female with failure to thrive, developmental delay, mood disorder and seizure disorder. The insertion was a full-length (~2.8 kb), antisense-oriented SVA insertion relative to the SRCAP transcript, bearing a 5' transduction and hallmarks of target-primed reverse transcription. The 20-bp 5' transduction allowed us to trace the source SVA element to an intron of a long non-coding RNA on chromosome 12, which is highly expressed in testis. RNA sequencing and qRT-PCR confirmed significant depletion of SRCAP expression and low-level exon skipping in the proband. This case highlights a novel disease-causing structural variant and the importance of transposon analysis in a clinical diagnostic setting.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Comunicação Interventricular , Transtornos do Neurodesenvolvimento , Anormalidades Múltiplas/genética , Adenosina Trifosfatases/genética , Adulto , Anormalidades Craniofaciais/genética , Éxons , Feminino , Comunicação Interventricular/genética , Humanos , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética
4.
N Engl J Med ; 385(22): 2059-2065, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34818480

RESUMO

The integration of genomic testing into clinical care enables the use of individualized approaches to the management of rare diseases. We describe the use of belzutifan, a potent and selective small-molecule inhibitor of the protein hypoxia-inducible factor 2α (HIF2α), in a patient with polycythemia and multiple paragangliomas (the Pacak-Zhuang syndrome). The syndrome was caused in this patient by somatic mosaicism for an activating mutation in EPAS1. Treatment with belzutifan led to a rapid and sustained tumor response along with resolution of hypertension, headaches, and long-standing polycythemia. This case shows the application of a targeted therapy for the treatment of a patient with a rare tumor-predisposition syndrome. (Funded by the Morin Family Fund for Pediatric Cancer and Alex's Lemonade Stand Foundation.).


Assuntos
Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Indenos/uso terapêutico , Paraganglioma/tratamento farmacológico , Policitemia/tratamento farmacológico , Adolescente , Neoplasias das Glândulas Suprarrenais/genética , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores/sangue , Cromograninas/sangue , Feminino , Mutação com Ganho de Função , Humanos , Indenos/efeitos adversos , Imageamento por Ressonância Magnética , Normetanefrina/sangue , Paraganglioma/genética , Policitemia/genética , Transdução de Sinais , Síndrome , Sequenciamento Completo do Genoma
5.
PLoS Genet ; 17(7): e1009639, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232960

RESUMO

ARHGAP42 encodes Rho GTPase activating protein 42 that belongs to a member of the GTPase Regulator Associated with Focal Adhesion Kinase (GRAF) family. ARHGAP42 is involved in blood pressure control by regulating vascular tone. Despite these findings, disorders of human variants in the coding part of ARHGAP42 have not been reported. Here, we describe an 8-year-old girl with childhood interstitial lung disease (chILD), systemic hypertension, and immunological findings who carries a homozygous stop-gain variant (c.469G>T, p.(Glu157Ter)) in the ARHGAP42 gene. The family history is notable for both parents with hypertension. Histopathological examination of the proband lung biopsy showed increased mural smooth muscle in small airways and alveolar septa, and concentric medial hypertrophy in pulmonary arteries. ARHGAP42 stop-gain variant in the proband leads to exon 5 skipping, and reduced ARHGAP42 levels, which was associated with enhanced RhoA and Cdc42 expression. This is the first report linking a homozygous stop-gain variant in ARHGAP42 with a chILD disorder, systemic hypertension, and immunological findings in human patient. Evidence of smooth muscle hypertrophy on lung biopsy and an increase in RhoA/ROCK signaling in patient cells suggests the potential mechanistic link between ARHGAP42 deficiency and the development of chILD disorder.


Assuntos
Proteínas Ativadoras de GTPase/genética , Hipertensão/genética , Doenças Pulmonares Intersticiais/genética , Animais , Criança , Feminino , Homozigoto , Humanos , Leucocitose/genética , Leucocitose/imunologia , Doenças Pulmonares Intersticiais/patologia , Linfocitose/genética , Linfocitose/imunologia , Masculino , Camundongos , Linhagem , Sequenciamento do Exoma , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Clin Genet ; 99(2): 313-317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33156547

RESUMO

Phosphatidylinositol Glycan Anchor Biosynthesis class H (PIGH) is an essential player in the glycosylphosphatidylinositol (GPI) synthesis, an anchor for numerous cell membrane-bound proteins. PIGH deficiency is a newly described and rare disorder associated with developmental delay, seizures and behavioral difficulties. Herein, we report three new unrelated families with two different bi-allelic PIGH variants, including one new variant p.(Arg163Trp) which seems associated with a more severe phenotype. The common clinical features in all affected individuals are developmental delay/intellectual disability and hypotonia. Variable clinical features include seizures, autism spectrum disorder, apraxia, severe language delay, dysarthria, feeding difficulties, facial dysmorphisms, microcephaly, strabismus, and musculoskeletal anomalies. The two siblings homozygous for the p.(Arg163Trp) variant have severe symptoms including profound psychomotor retardation, intractable seizures, multiple bone fractures, scoliosis, loss of independent ambulation, and delayed myelination on brain MRI. Serum iron levels were significantly elevated in one individual. All tested individuals with PIGH deficiency had normal alkaline phosphatase and CD16, a GPI-anchored protein (GPI-AP), was found to be decreased by 60% on granulocytes from one individual. This study expands the PIGH deficiency phenotype range toward the severe end of the spectrum with the identification of a novel pathogenic variant.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Transtornos do Neurodesenvolvimento/genética , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Adulto Jovem
7.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126568

RESUMO

High-grade serous carcinoma (HGSC), the most lethal subtype of epithelial ovarian cancer (EOC), is characterized by widespread TP53 mutations (>90%), most of which are missense mutations (>70%). The objective of this study was to investigate differential transcriptional targets affected by a common germline P72R SNP (rs1042522) in two p53 hotspot mutants, R248Q and R248W, and identify the mechanism through which the P72R SNP affects the neomorphic properties of these mutants. Using isogenic cell line models, transcriptomic analysis, xenografts, and patient data, we found that the P72R SNP modifies the effect of p53 hotspot mutants on cellular morphology and invasion properties. Most importantly, RNA sequencing studies identified CXCL1 a critical factor that is differentially affected by P72R SNP in R248Q and R248W mutants and is responsible for differences in cellular morphology and functional properties observed in these p53 mutants. We show that the mutants with the P72 SNP promote a reversion of the EMT phenotype to epithelial characteristics, whereas its R72 counterpart promotes a mesenchymal transition via the chemokine CXCL1. These studies reveal a new role of the P72R SNP in modulating the neomorphic properties of p53 mutants via CXCL1, which has significant implications for tumor invasion and metastasis.


Assuntos
Biomarcadores Tumorais/metabolismo , Quimiocina CXCL1/metabolismo , Transição Epitelial-Mesenquimal , Mutação , Neoplasias Ovarianas/patologia , Polimorfismo Genético , Proteína Supressora de Tumor p53/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Quimiocina CXCL1/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fenótipo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cancer Res ; 16(6): 961-973, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545475

RESUMO

FOXM1 transcription factor network is activated in over 84% of cases in high-grade serous ovarian cancer (HGSOC), and FOXM1 upregulates the expression of genes involved in the homologous recombination (HR) DNA damage and repair (DDR) pathway. However, the role of FOXM1 in PARP inhibitor response has not yet been studied. This study demonstrates that PARP inhibitor (PARPi), olaparib, induces the expression and nuclear localization of FOXM1. On the basis of ChIP-qPCR, olaparib enhances the binding of FOXM1 to genes involved in HR repair. FOXM1 knockdown by RNAi or inhibition by thiostrepton decreases FOXM1 expression, decreases the expression of HR repair genes, such as BRCA1 and RAD51, and enhances sensitivity to olaparib. Comet and PARP trapping assays revealed increases in DNA damage and PARP trapping in FOXM1-inhibited cells treated with olaparib. Finally, thiostrepton decreases the expression of BRCA1 in rucaparib-resistant cells and enhances sensitivity to rucaparib. Collectively, these results identify that FOXM1 plays an important role in the adaptive response induced by olaparib and FOXM1 inhibition by thiostrepton induces "BRCAness" and enhances sensitivity to PARP inhibitors.Implications: FOXM1 inhibition represents an effective strategy to overcome resistance to PARPi, and targeting FOXM1-mediated adaptive pathways may produce better therapeutic effects for PARP inhibitors. Mol Cancer Res; 16(6); 961-73. ©2018 AACR.


Assuntos
Antineoplásicos/efeitos adversos , Proteína Forkhead Box M1/genética , Ftalazinas/efeitos adversos , Piperazinas/efeitos adversos , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Transfecção
9.
Biol Reprod ; 96(2): 491-501, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28203708

RESUMO

Phosphoramide mustard (PM) destroys rapidly dividing cells and activates the DNA double strand break marker, γH2AX, and DNA repair in rat granulosa cells and neonatal ovaries. The effects of PM exposure on DNA damage and activation of DNA damage repair in lean and obese female mice were investigated. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice received sesame oil or PM (95%; 25 mg/kg; intraperitoneal injection). Obesity increased (P < 0.05) hepatic and spleen but decreased (P < 0.05) uterine weight. PM exposure reduced (P < 0.05) spleen weight regardless of body composition, however, decreased (P < 0.05) ovarian and hepatic weight were observed in the obese PM-exposed females. PM decreased (P < 0.05) primordial and primary follicle number in lean females. Obesity and PM increased (P < 0.05) γH2AX protein. DNA damage repair genes Prkdc, Parp1, and Rad51 mRNA were unaltered by obesity, however, Atm and Xrcc6 mRNA were increased (P < 0.05) while Brca1 was reduced (P < 0.05). Obesity reduced (P < 0.05) PRKDC, XRCC6 and but increased (P < 0.05) ATM protein. ATM, BRCA1 and RAD51 protein levels were increased (P < 0.05) by PM exposure in both lean and obese mice, while PM-induced increased (P < 0.05) XRCC6 and PARP1 were observed only in lean mice. Thus, PM induces ovarian DNA damage in vivo; obesity alters DNA repair response gene mRNA and protein level; the ovary activates DNA repair proteins in response to PM; but obesity compromises the ovarian PM response.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Obesidade/patologia , Ovário/patologia , Mostardas de Fosforamida/toxicidade , Animais , Biomarcadores , Feminino , Camundongos , Camundongos Endogâmicos , Ovário/efeitos dos fármacos , RNA Mensageiro
10.
Biol Reprod ; 96(2): 478-490, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28203716

RESUMO

Mechanisms underlying obesity-associated reproductive impairment are ill defined. Hyperinsulinemia is a metabolic perturbation often observed in obese subjects. Insulin activates phosphatidylinositol 3-kinase (PI3K) signaling, which regulates ovarian folliculogenesis, steroidogenesis, and xenobiotic metabolism. The impact of progressive obesity on ovarian genes encoding mRNA involved in insulin-mediated PI3K signaling and xenobiotic biotransformation [insulin receptor (Insr), insulin receptor substrate 1 (Irs1), 2 (Irs2), and 3 (Irs3); kit ligand (Kitlg), stem cell growth factor receptor (Kit), protein kinase B (AKT) alpha (Akt1), beta (Akt2), forkhead transcription factor (FOXO) subfamily 1 (Foxo1), and subfamily 3 (Foxo3a), microsomal epoxide hydrolase (Ephx1), cytochrome P450 family 2, subfamily E, polypeptide 1 (Cyp2e1), glutathione S-transferase (GST) class Pi (Gstp1) and class mu 1 (Gstm1)] was determined in normal wild-type nonagouti (a/a; lean) and lethal yellow mice (KK.CG-Ay/J; obese) at 6, 12, 18, or 24 weeks of age. At 6 weeks, ovaries from obese mice had increased (P < 0.05) Insr and Irs3 but decreased (P < 0.05) Kitlg, Foxo1, and Cyp2e1 mRNA levels. Interestingly, at 12 weeks, an increase (P < 0.05) in Kitlg and Kit mRNA, pIRS1Ser302, pAKTThr308, EPHX1, and GSTP1 protein level was observed due to obesity, while Cyp2e1 mRNA and protein were reduced. A phosphoramide mustard (PM) challenge increased (P < 0.05) ovarian EPHX1 protein abundance in lean but not obese females. In addition, lung tissue from PM-exposed animals had increased (P < 0.05) EPHX1 protein with no impact of obesity thereon. Taken together, progressive obesity affected ovarian signaling pathways potentially involved in obesity-associated reproductive disorders.


Assuntos
Insulina/metabolismo , Obesidade , Ovário/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Mostardas de Fosforamida/toxicidade , Transdução de Sinais/fisiologia , Animais , Feminino , Camundongos , Ovário/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/genética
11.
Reprod Toxicol ; 67: 65-78, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27888070

RESUMO

Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide. Postnatal day 4 Fisher 344 rat ovaries were exposed to vehicle control (1% DMSO) or PM (60µM)±LY294002 or rapamycin for 2 or 4 d. Transmission election microscopy revealed abnormally large golgi apparatus and electron dense mitochondria in PM-exposed ovaries prior to and at the time of follicle depletion. PM exposure increased (P<0.05) mRNA abundance of Bbc3, Cdkn1a, Ctfr, Edn1, Gstp1, Nqo1, Tlr4, Tnfrsfla, Txnrd1 and decreased (P<0.05) Casp1 and Il1b after 4d. PM exposure increased (P<0.1) BECN1 and LAMP, decreased (P<0.1) ABCB1 and did not alter ABCC1 protein. LY294002 did not impact PM-induced ovotoxicity, but decreased ABCC1 and ABCB1 protein. Rapamycin prevented PM-induced follicle loss. These data suggest that the mammalian target of rapamycin, mTOR, may be a gatekeeper of PM-induced follicle loss.


Assuntos
Antineoplásicos Alquilantes/toxicidade , Autofagia/efeitos dos fármacos , Ovário/efeitos dos fármacos , Mostardas de Fosforamida/toxicidade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Feminino , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/ultraestrutura , Técnicas In Vitro , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/ultraestrutura , Ovário/metabolismo , Ovário/ultraestrutura , Ratos Endogâmicos F344 , Sirolimo/farmacologia
12.
Toxicol Sci ; 141(2): 441-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070981

RESUMO

The anti-neoplastic prodrug, cyclophosphamide, requires biotransformation to phosphoramide mustard (PM), which partitions to volatile chloroethylaziridine (CEZ). PM and CEZ are ovotoxicants, however their ovarian biotransformation remains ill-defined. This study investigated PM and CEZ metabolism mechanisms through the utilization of cultured postnatal day 4 (PND4) Fisher 344 (F344) rat ovaries exposed to vehicle control (1% dimethyl sulfoxide (DMSO)) or PM (60µM) for 2 or 4 days. Quantification of mRNA levels via an RT(2) profiler PCR array and target-specific RT-PCR along with Western blotting found increased mRNA and protein levels of xenobiotic metabolism genes including microsomal epoxide hydrolase (Ephx1) and glutathione S-transferase isoform pi (Gstp). PND4 ovaries were treated with 1% DMSO, PM (60µM), cyclohexene oxide to inhibit EPHX1 (CHO; 2mM), or PM + CHO for 4 days. Lack of functional EPHX1 increased PM-induced ovotoxicity, suggesting a detoxification role for EPHX1. PND4 ovaries were also treated with 1% DMSO, PM (60µM), BSO (Glutathione (GSH) depletion; 100µM), GEE (GSH supplementation; 2.5mM), PM ± BSO, or PM ± GEE for 4 days. GSH supplementation prevented PM-induced follicle loss, whereas no impact of GSH depletion was observed. Lastly, the effect of ovarian GSH on CEZ liberation and ovotoxicity was evaluated. Both untreated and GEE-treated PND4 ovaries were plated adjacent to ovaries receiving PM + GEE or PM + BSO treatments. Less CEZ-induced ovotoxicity was observed with both GEE and BSO treatments indicating reduced CEZ liberation from PM. Collectively, this study supports ovarian biotransformation of PM, thereby influencing the ovotoxicity that ensues.


Assuntos
Antineoplásicos Alquilantes/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Ovário/efeitos dos fármacos , Mostardas de Fosforamida/toxicidade , Xenobióticos/metabolismo , Animais , Biotransformação , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Feminino , Glutationa/metabolismo , Ovário/enzimologia , Ovário/patologia , RNA Mensageiro/metabolismo , Ratos Endogâmicos F344 , Fatores de Tempo , Técnicas de Cultura de Tecidos
13.
Toxicol Appl Pharmacol ; 277(1): 1-7, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24642057

RESUMO

The finite ovarian follicle reserve can be negatively impacted by exposure to chemicals including the anti-neoplastic agent, cyclophosphamide (CPA). CPA requires bioactivation to phosphoramide mustard (PM) to elicit its therapeutic effects however; in addition to being the tumor-targeting metabolite, PM is also ovotoxic. In addition, PM can break down to a cytotoxic, volatile metabolite, chloroethylaziridine (CEZ). The aim of this study was initially to characterize PM-induced ovotoxicity in growing follicles. Using PND4 Fisher 344 rats, ovaries were cultured for 4 days before being exposed once to PM (10 or 30 µM). Following eight additional days in culture, relative to control (1% DMSO), PM had no impact on primordial, small primary or large primary follicle number, but both PM concentrations induced secondary follicle depletion (P<0.05). Interestingly, a reduction in follicle number in the control-treated ovaries was observed. Thus, the involvement of a volatile, cytotoxic PM metabolite (VC) in PM-induced ovotoxicity was explored in cultured rat ovaries, with control ovaries physically separated from PM-treated ovaries during culture. Direct PM (60 µM) exposure destroyed all stage follicles after 4 days (P<0.05). VC from nearby wells depleted primordial follicles after 4 days (P<0.05), temporarily reduced secondary follicle number after 2 days, and did not impact other stage follicles at any other time point. VC was determined to spontaneously liberate from PM, which could contribute to degradation of PM during storage. Taken together, this study demonstrates that PM and VC are ovotoxicants, with different follicular targets, and that the VC may be a major player during PM-induced ovotoxicity observed in cancer survivors.


Assuntos
Aziridinas/toxicidade , Ovário/efeitos dos fármacos , Mostardas de Fosforamida/toxicidade , Animais , Antineoplásicos/farmacocinética , Aziridinas/farmacologia , Ciclofosfamida/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Folículo Ovariano/efeitos dos fármacos , Mostardas de Fosforamida/farmacocinética , Ratos
14.
Toxicol Appl Pharmacol ; 276(3): 179-87, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24576726

RESUMO

Chronic exposure to the polycyclic aromatic hydrocarbon 7,12-dimethylbenz[a]anthracene (DMBA), generated during combustion of organic matter including cigarette smoke, depletes all ovarian follicle types in the mouse and rat, and in vitro models mimic this effect. To investigate the mechanisms involved in follicular depletion during acute DMBA exposure, two concentrations of DMBA at which follicle depletion has (75 nM) and has not (12.5 nM) been observed were investigated. Postnatal day four F344 rat ovaries were maintained in culture for four days before a single exposure to vehicle control (1% DMSO; CT) or DMBA (12 nM; low-concentration or 75 nM; high-concentration). After four or eight additional days of culture, DMBA-induced follicle depletion was evaluated via follicle enumeration. Relative to control, DMBA did not affect follicle numbers after 4 days of exposure, but induced large primary follicle loss at both concentrations after 8 days; while, the low-concentration DMBA also caused secondary follicle depletion. Neither concentration affected primordial or small primary follicle number. RNA was isolated and quantitative RT-PCR performed prior to follicle loss to measure mRNA levels of genes involved in xenobiotic metabolism (Cyp2e1, Gstmu, Gstpi, Ephx1), autophagy (Atg7, Becn1), oxidative stress response (Sod1, Sod2) and the phosphatidylinositol 3-kinase (PI3K) pathway (Kitlg, cKit, Akt1) 1, 2 and 4 days after exposure. With the exception of Atg7 and cKit, DMBA increased (P < 0.05) expression of all genes investigated. Also, BECN1 and pAKT(Thr308) protein levels were increased while cKIT was decreased by DMBA exposure. Taken together, these results suggest an increase in DMBA bioactivation, add to the mechanistic understanding of DMBA-induced ovotoxicity and raise concern regarding female low concentration DMBA exposures.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Ovário/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Autofagia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Epóxido Hidrolases/genética , Feminino , Glutationa Transferase/genética , Folículo Ovariano/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA