Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849372

RESUMO

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Assuntos
Desaminases APOBEC/genética , Neoplasias/genética , Desaminases APOBEC/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Análise Mutacional de DNA/métodos , Bases de Dados Genéticas , Exoma , Genoma Humano/genética , Xenoenxertos , Humanos , Mutagênese , Mutação/genética , Taxa de Mutação , Retroelementos , Sequenciamento do Exoma/métodos
2.
Nat Commun ; 8: 15936, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28643781

RESUMO

Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation, we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. It may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike.


Assuntos
Rearranjo Gênico , Mutação , Osteossarcoma/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Hibridização in Situ Fluorescente , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Pessoa de Meia-Idade , Osteossarcoma/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Adulto Jovem
4.
Nat Genet ; 47(4): 367-372, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730763

RESUMO

Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.


Assuntos
Evolução Clonal/genética , Análise Mutacional de DNA , Neoplasias Primárias Múltiplas/genética , Próstata/citologia , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Estudos de Casos e Controles , Linhagem da Célula/genética , Células Clonais/patologia , Humanos , Masculino , Mutação , Filogenia
5.
Science ; 345(6196): 1251343, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082706

RESUMO

Long interspersed nuclear element-1 (L1) retrotransposons are mobile repetitive elements that are abundant in the human genome. L1 elements propagate through RNA intermediates. In the germ line, neighboring, nonrepetitive sequences are occasionally mobilized by the L1 machinery, a process called 3' transduction. Because 3' transductions are potentially mutagenic, we explored the extent to which they occur somatically during tumorigenesis. Studying cancer genomes from 244 patients, we found that tumors from 53% of the patients had somatic retrotranspositions, of which 24% were 3' transductions. Fingerprinting of donor L1s revealed that a handful of source L1 elements in a tumor can spawn from tens to hundreds of 3' transductions, which can themselves seed further retrotranspositions. The activity of individual L1 elements fluctuated during tumor evolution and correlated with L1 promoter hypomethylation. The 3' transductions disseminated genes, exons, and regulatory elements to new locations, most often to heterochromatic regions of the genome.


Assuntos
Elementos de DNA Transponíveis , Elementos Nucleotídeos Longos e Dispersos , Neoplasias/genética , Transdução Genética , Carcinogênese/genética , Cromatina/química , Éxons , Genoma Humano , Humanos , Mutagênese Insercional , Translocação Genética
6.
Genome Res ; 24(10): 1624-36, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25030888

RESUMO

Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage-fusion-bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling "chromoanasynthesis," a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease.


Assuntos
Caenorhabditis elegans/genética , Carcinógenos/farmacologia , Reparo do DNA , Mutação , Análise de Sequência de DNA/métodos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , DNA Helicases/genética , Genoma , Modelos Animais
7.
Nature ; 508(7494): 98-102, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24670643

RESUMO

Changes in gene dosage are a major driver of cancer, known to be caused by a finite, but increasingly well annotated, repertoire of mutational mechanisms. This can potentially generate correlated copy-number alterations across hundreds of linked genes, as exemplified by the 2% of childhood acute lymphoblastic leukaemia (ALL) with recurrent amplification of megabase regions of chromosome 21 (iAMP21). We used genomic, cytogenetic and transcriptional analysis, coupled with novel bioinformatic approaches, to reconstruct the evolution of iAMP21 ALL. Here we show that individuals born with the rare constitutional Robertsonian translocation between chromosomes 15 and 21, rob(15;21)(q10;q10)c, have approximately 2,700-fold increased risk of developing iAMP21 ALL compared to the general population. In such cases, amplification is initiated by a chromothripsis event involving both sister chromatids of the Robertsonian chromosome, a novel mechanism for cancer predisposition. In sporadic iAMP21, breakage-fusion-bridge cycles are typically the initiating event, often followed by chromothripsis. In both sporadic and rob(15;21)c-associated iAMP21, the final stages frequently involve duplications of the entire abnormal chromosome. The end-product is a derivative of chromosome 21 or the rob(15;21)c chromosome with gene dosage optimized for leukaemic potential, showing constrained copy-number levels over multiple linked genes. Thus, dicentric chromosomes may be an important precipitant of chromothripsis, as we show rob(15;21)c to be constitutionally dicentric and breakage-fusion-bridge cycles generate dicentric chromosomes somatically. Furthermore, our data illustrate that several cancer-specific mutational processes, applied sequentially, can coordinate to fashion copy-number profiles over large genomic scales, incrementally refining the fitness benefits of aggregated gene dosage changes.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 21/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Cromátides/genética , Quebra Cromossômica , Cromossomos Humanos Par 15/genética , Variações do Número de Cópias de DNA/genética , Humanos , Recombinação Genética/genética , Translocação Genética/genética
8.
Nat Genet ; 45(8): 923-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23770606

RESUMO

Chondrosarcoma is a heterogeneous collection of malignant bone tumors and is the second most common primary malignancy of bone after osteosarcoma. Recent work has identified frequent, recurrent mutations in IDH1 or IDH2 in nearly half of central chondrosarcomas. However, there has been little systematic genomic analysis of this tumor type, and, thus, the contribution of other genes is unclear. Here we report comprehensive genomic analyses of 49 individuals with chondrosarcoma (cases). We identified hypermutability of the major cartilage collagen gene COL2A1, with insertions, deletions and rearrangements identified in 37% of cases. The patterns of mutation were consistent with selection for variants likely to impair normal collagen biosynthesis. In addition, we identified mutations in IDH1 or IDH2 (59%), TP53 (20%), the RB1 pathway (33%) and Hedgehog signaling (18%).


Assuntos
Neoplasias Ósseas/genética , Condrossarcoma/genética , Colágeno Tipo II/genética , Mutação , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Condrossarcoma/metabolismo , Condrossarcoma/patologia , Colágeno Tipo II/metabolismo , Biologia Computacional , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Gradação de Tumores , Polimorfismo de Nucleotídeo Único , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais
9.
J Clin Invest ; 123(7): 2965-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23778141

RESUMO

Adenoid cystic carcinoma (ACC) is a rare malignancy that can occur in multiple organ sites and is primarily found in the salivary gland. While the identification of recurrent fusions of the MYB-NFIB genes have begun to shed light on the molecular underpinnings, little else is known about the molecular genetics of this frequently fatal cancer. We have undertaken exome sequencing in a series of 24 ACC to further delineate the genetics of the disease. We identified multiple mutated genes that, combined, implicate chromatin deregulation in half of cases. Further, mutations were identified in known cancer genes, including PIK3CA, ATM, CDKN2A, SF3B1, SUFU, TSC1, and CYLD. Mutations in NOTCH1/2 were identified in 3 cases, and we identify the negative NOTCH signaling regulator, SPEN, as a new cancer gene in ACC with mutations in 5 cases. Finally, the identification of 3 likely activating mutations in the tyrosine kinase receptor FGFR2, analogous to those reported in ovarian and endometrial carcinoma, point to potential therapeutic avenues for a subset of cases.


Assuntos
Carcinoma Adenoide Cístico/genética , Exoma , Neoplasias das Glândulas Salivares/genética , Análise Mutacional de DNA , Genes Neoplásicos , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Polimorfismo de Nucleotídeo Único
10.
Cell ; 149(5): 979-93, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22608084

RESUMO

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Assuntos
Neoplasias da Mama/genética , Análise Mutacional de DNA , Estudo de Associação Genômica Ampla , Mutação , Desaminase APOBEC-1 , Proteína BRCA2/genética , Citidina Desaminase/metabolismo , Feminino , Genes BRCA1 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
11.
Nature ; 463(7279): 360-3, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20054297

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification-SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase-as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.


Assuntos
Carcinoma de Células Renais/genética , Genes da Neurofibromatose 2 , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Neoplasias Renais/genética , Proteínas Nucleares/genética , Oxirredutases N-Desmetilantes/genética , Carcinoma de Células Renais/patologia , Hipóxia Celular/genética , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases , Humanos , Neoplasias Renais/patologia , Mutação/genética , Análise de Sequência de DNA
12.
Nat Genet ; 41(5): 521-3, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19330029

RESUMO

Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.


Assuntos
Mutação , Neoplasias/enzimologia , Neoplasias/genética , Oxirredutases N-Desmetilantes/genética , Epigênese Genética , Humanos , Histona Desmetilases com o Domínio Jumonji
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA