Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Chem ; 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37929724

RESUMO

BACKGROUND: The current study recognizes the significance of estrogen receptor alpha (ERα) as a member of the nuclear receptor protein family, which holds a central role in the pathophysiology of breast cancer. ERα serves as a valuable prognostic marker, with its established relevance in predicting disease outcomes and treatment responses. METHOD: In this study, computational methods are utilized to search for suitable drug-like compounds that demonstrate analogous ligand binding kinetics to ERα. RESULTS: Docking-based simulation screened out the top 5 compounds - ZINC13377936, NCI35753, ZINC35465238, ZINC14726791, and NCI663569 against the targeted protein. Further, their dynamics studies reveal that the compounds ZINC13377936 and NCI35753 exhibit the highest binding stability and affinity. CONCLUSION: Anticipating the competitive inhibition of ERα protein expression in breast cancer, we envision that both ZINC13377936 and NCI35753 compounds hold substantial promise as potential therapeutic agents. These candidates warrant thorough consideration for rigorous In vitro and In vivo evaluations within the context of clinical trials. The findings from this current investigation carry significant implications for the advancement of future diagnostic and therapeutic approaches for breast cancer.

2.
Appl Biochem Biotechnol ; 195(8): 5094-5119, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36976507

RESUMO

Glioblastoma (GBM) is a WHO Grade IV tumor with poor visibility, a high risk of comorbidity, and exhibit limited treatment options. Resurfacing from second-rate glioma was originally classified as either mandatory or optional. Recent interest in personalized medicine has motivated research toward biomarker stratification-based individualized illness therapy. GBM biomarkers have been investigated for their potential utility in prognostic stratification, driving the development of targeted therapy and customizing therapeutic treatment. Due to the availability of a specific EGFRvIII mutational variation with a clear function in glioma-genesis, recent research suggests that EGFR has the potential to be a prognostic factor in GBM, while others have shown no clinical link between EGFR and survival. The pre-existing pharmaceutical lapatinib (PubChem ID: 208,908) with a higher affinity score is used for virtual screening. As a result, the current study revealed a newly screened chemical (PubChem CID: 59,671,768) with a higher affinity than the previously known molecule. When the two compounds are compared, the former has the lowest re-rank score. The time-resolved features of a virtually screened chemical and an established compound were investigated using molecular dynamics simulation. Both compounds are equivalent, according to the ADMET study. This report implies that the virtual screened chemical could be a promising Glioblastoma therapy.


Assuntos
Glioblastoma , Humanos , Simulação de Acoplamento Molecular , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Simulação de Dinâmica Molecular , Receptores ErbB/genética , Receptores ErbB/uso terapêutico , Prognóstico
3.
J Mol Model ; 28(4): 100, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35325303

RESUMO

Vascular endothelial growth factor (VEGF) and its receptor play an important role both in physiologic and pathologic angiogenesis, which is identified in ovarian cancer progression and metastasis development. The aim of the present investigation is to identify a potential vascular endothelial growth factor inhibitor which is playing a crucial role in stimulating the immunosuppressive microenvironment in tumor cells of the ovary and to examine the effectiveness of the identified inhibitor for the treatment of ovarian cancer using various in silico approaches. Twelve established VEGF inhibitors were collected from various literatures. The compound AEE788 displays great affinity towards the target protein as a result of docking study. AEE788 was further used for structure-based virtual screening in order to obtain a more structurally similar compound with high affinity. Among the 80 virtual screened compounds, CID 88265020 explicates much better affinity than the established compound AEE788. Based on molecular dynamics simulation, pharmacophore and comparative toxicity analysis of both the best established compound and the best virtual screened compound displayed a trivial variation in associated properties. The virtual screened compound CID 88265020 has a high affinity with the lowest re-rank score and holds a huge potential to inhibit the VGFR and can be implemented for prospective future investigations in ovarian cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Fator A de Crescimento do Endotélio Vascular , Antineoplásicos/química , Feminino , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias Ovarianas/tratamento farmacológico , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
4.
Curr Top Med Chem ; 21(9): 790-818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33463471

RESUMO

BACKGROUND: Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma characterized by the mutation and overexpression of the cyclin D1 protein by the reciprocal chromosomal translocation t(11;14)(q13:q32). AIM: The present study aims to identify potential inhibition of MMP9, Proteasome, BTK, and TAK1 and determine the most suitable and effective protein target for the MCL. METHODOLOGY: Nine known inhibitors for MMP9, 24 for proteasome, 15 for BTK and 14 for TAK1 were screened. SB-3CT (PubChem ID: 9883002), oprozomib (PubChem ID: 25067547), zanubrutinib (PubChem ID: 135565884) and TAK1 inhibitor (PubChem ID: 66760355) were recognized as drugs with high binding capacity with their respective protein receptors. 41, 72, 102 and 3 virtual screened compounds were obtained after the similarity search with compound (PubChem ID:102173753), PubChem compound SCHEMBL15569297 (PubChem ID:72374403), PubChem compound SCHEMBL17075298 (PubChem ID:136970120) and compound CID: 71814473 with best virtual screened compounds. RESULT: MMP9 inhibitors show commendable affinity and good interaction profile of compound holding PubChem ID:102173753 over the most effective established inhibitor SB-3CT. The pharmacophore study of the best virtual screened compound reveals its high efficacy based on various interactions. The virtual screened compound's better affinity with the target MMP9 protein was deduced using toxicity and integration profile studies. CONCLUSION: Based on the ADMET profile, the compound (PubChem ID: 102173753) could be a potent drug for MCL treatment. Similar to the established SB-3CT, the compound was non-toxic with LD50 values for both the compounds lying in the same range.


Assuntos
Antineoplásicos/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia
5.
Curr Drug Targets ; 22(6): 631-655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397265

RESUMO

Artificial Intelligence revolutionizes the drug development process that can quickly identify potential biologically active compounds from millions of candidate within a short period. The present review is an overview based on some applications of Machine Learning based tools, such as GOLD, Deep PVP, LIB SVM, etc. and the algorithms involved such as support vector machine (SVM), random forest (RF), decision tree and Artificial Neural Network (ANN), etc. at various stages of drug designing and development. These techniques can be employed in SNP discoveries, drug repurposing, ligand-based drug design (LBDD), Ligand-based Virtual Screening (LBVS) and Structure- based Virtual Screening (SBVS), Lead identification, quantitative structure-activity relationship (QSAR) modeling, and ADMET analysis. It is demonstrated that SVM exhibited better performance in indicating that the classification model will have great applications on human intestinal absorption (HIA) predictions. Successful cases have been reported which demonstrate the efficiency of SVM and RF models in identifying JFD00950 as a novel compound targeting against a colon cancer cell line, DLD-1, by inhibition of FEN1 cytotoxic and cleavage activity. Furthermore, a QSAR model was also used to predict flavonoid inhibitory effects on AR activity as a potent treatment for diabetes mellitus (DM), using ANN. Hence, in the era of big data, ML approaches have been evolved as a powerful and efficient way to deal with the huge amounts of generated data from modern drug discovery to model small-molecule drugs, gene biomarkers and identifying the novel drug targets for various diseases.


Assuntos
Inteligência Artificial , Big Data , Descoberta de Drogas , Preparações Farmacêuticas , Medicina de Precisão , Humanos , Ligantes , Aprendizado de Máquina
6.
Curr Top Med Chem ; 19(30): 2766-2781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31721713

RESUMO

BACKGROUND: Originating from the abnormal growth of neuroblasts, pediatric neuroblastoma affects the age group below 15 years. It is an aggressive heterogenous cancer with a high morbidity rate. Biological marker GD2 synthesised by the GD2 gene acts as a powerful predictor of neuroblastoma cells. GD2 gangliosides are sialic acid-containing glycosphingolipids. Differential expression during brain development governs the function of the GD2. The present study explains the interaction of the GD2 with its established inhibitors and discovers the compound having a high binding affinity against the target protein. Technically, during the development of new compounds through docking studies, the best drug among all pre-exist inhibitors was filtered. Hence in reference to the best docked compound, the study proceeded further. METHODOLOGY: The In silico approach provides a platform to determine and establish potential inhibitor against GD2 in Pediatric neuroblastoma. The 3D structure of GD2 protein was modelled by homology base fold methods using Smith-Watermans' Local alignment. A total of 18 established potent compounds were subjected to molecular docking and Etoposide (CID: 36462) manifested the highest affinity. The similarity search presented 336 compounds similar to Etoposide. RESULTS: Through virtual screening, the compound having PubChem ID 10254934 showed a better affinity towards GD2 than the established inhibitor. The comparative profiling of the two compounds based on various interactions such as H-bond interaction, aromatic interactions, electrostatic interactions and ADMET profiling and toxicity studies were performed using various computational tools. CONCLUSION: The docking separated the virtual screened drug (PubChemID: 10254934) from the established inhibitor with a better re-rank score of -136.33. The toxicity profile of the virtual screened drug was also lesser (less lethal) than the established drug. The virtual screened drug was observed to be bioavailable as it does not cross the blood-brain barrier. Conclusively, the virtual screened compound obtained in the present investigation is better than the established inhibitor and can be further augmented by In vitro analysis, pharmacodynamics and pharmacokinetic studies.


Assuntos
Antineoplásicos/uso terapêutico , Gangliosídeos/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Adolescente , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Criança , Pré-Escolar , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Gangliosídeos/química , Humanos , Lactente , Simulação de Acoplamento Molecular , Neuroblastoma/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA