Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cardiovasc Res ; 120(2): 132-139, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38242632

RESUMO

The chromogranin-secretogranin secretory proteins-granins-are acidic proteins localized in granules of endocrine cells and neurons. The chromogranin family includes chromogranins A (CgA) and B, as well as secretogranin II (once called chromogranin C). Members of this family undergo catalytic proteolysis to produce active peptides. The CgA-derived peptides vasostatin-1 and vasostatin-2, in particular, appear to protect against atherosclerosis, suppressing the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, as well as exerting vasodilatory effects by enhancing nitric oxide bioavailability. Vasostatin-1 also suppresses vasoconstriction and abnormal angiogenesis. Vasostatin-1 and vasostatin-2 may be novel therapeutic targets for atherosclerosis and coronary heart disease, also protecting the myocardium against ischaemic damage.


Assuntos
Aterosclerose , Calreticulina , Cromograninas , Fragmentos de Peptídeos , Humanos , Cromograninas/química , Cromograninas/metabolismo , Angiogênese , Proteínas/metabolismo , Peptídeos
2.
J Clin Med ; 12(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002739

RESUMO

Left ventricular global longitudinal strain (GLS) has an important role in the diagnosis of cancer therapy-related cardiac dysfunction (CTRCD). Little is known about the role of atrial function in diagnosing CTRCD. The aim of our study was to assess the impact of anti-cancer drugs on atrial function measured by speckle-tracking echocardiography in breast cancer women. A prospective multicenter study was conducted enrolling 169 breast cancer women treated with anthracyclines. A cardiological evaluation including an electrocardiogram and echocardiogram with an analysis of GLS, left atrial (LA) strain, and LA stiffness (LASi) was performed at baseline (T0), 3 (T1), and 6 months (T2) after starting chemotherapy. The patients were divided into two groups: patients with asymptomatic mild cardiotoxicity at T1 (with a relative reduction in GLS > 15%; Group 1) and those without (Group 2). We did not find a significant change in left ventricular ejection fraction (LVEF) at T1 and T2; we found a significant change in GLS (p-value < 0.0001) in the peak atrial longitudinal strain (PALS) and in LASi (p-value < 0.0001). Impairment of atrial function was greater in Group 1 compared to Group 2. A PALS variation > 20.8% identified patients who were most likely to develop asymptomatic mild cardiotoxicity [AUC 0.62; CI (0.51-0.73) p = 0.06, sensitivity 45%, specificity 69.5%]. Conclusions: PALS and LASi significantly change during chemotherapy in association with GLS. Atrial strain is an additional parameter that could be measured together with GLS to detect cardiotoxicity early.

3.
Vascul Pharmacol ; 153: 107223, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678516

RESUMO

With the improvement in cancer prognosis due to advances in antitumor therapeutic protocols and new targeted and immunotherapies, we are witnessing a growing increase in survival, however, at the same timeincrease in morbidity among cancer survivors as a consequences of the increased cardiovascular adverse effects of antineoplastic drugs. Common cardiovascular complications of antineoplastic therapies may include cardiac complications such as arrhythmias, myocardial ischemia, left ventricular dysfunction culminating in heart failure as well as vascular complications including arterial hypertension, thromboembolic events, and accelerated atherosclerosis. The toxicity results from the fact that these drugs not only target cancer cells but also affect normal cells within the cardiovascular system. In this article, we review the clinical features and main mechanisms implicated in antineoplastic drug-induced cardiovascular toxicity, including oxidative stress, inflammation, immunothrombosis and growth factors-induced signaling pathways.


Assuntos
Antineoplásicos , Cardiopatias , Insuficiência Cardíaca , Neoplasias , Humanos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Antineoplásicos/efeitos adversos , Coração , Cardiopatias/induzido quimicamente , Neoplasias/tratamento farmacológico , Neoplasias/complicações
4.
J Clin Med ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36983398

RESUMO

Vascular progenitor cells are activated to repair and form a neointima following vascular damage such as hypertension, atherosclerosis, diabetes, trauma, hypoxia, primary cancerous lesions and metastases as well as catheter interventions. They play a key role not only in the resolution of the vascular lesion but also in the adult neovascularization and angiogenesis sprouting (i.e., the growth of new capillaries from pre-existing ones), often associated with carcinogenesis, favoring the formation of metastases, survival and progression of tumors. In this review, we discuss the biology, cellular plasticity and pathophysiology of different vascular progenitor cells, including their origins (sources), stimuli and activated pathways that induce differentiation, isolation and characterization. We focus on their role in tumor-induced vascular injury and discuss their implications in promoting tumor angiogenesis during cancer proliferation and migration.

5.
Cardiovasc Res ; 119(5): 1175-1189, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36627733

RESUMO

AIMS: Sodium-glucose cotransporter 2 inhibitors have beneficial effects on heart failure and cardiovascular mortality in diabetic and non-diabetic patients, with unclear mechanisms. Autophagy is a cardioprotective mechanism under acute stress conditions, but excessive autophagy accelerates myocardial cell death leading to autosis. We evaluated the protective role of empagliflozin (EMPA) against cardiac injury in murine diabetic cardiomyopathy. METHODS AND RESULTS: Male mice, rendered diabetics by one single intraperitoneal injection of streptozotocin and treated with EMPA (30 mg/kg/day), had fewer apoptotic cells (4.9 ± 2.1 vs. 1 ± 0.5 TUNEL-positive cells %, P < 0.05), less senescence (10.1 ± 2 vs. 7.9 ± 1.2 ß-gal positivity/tissue area, P < 0.05), fibrosis (0.2 ± 0.05 vs. 0.15 ± 0.06, P < 0.05 fibrotic area/tissue area), autophagy (7.9 ± 0.05 vs. 2.3 ± 0.6 fluorescence intensity/total area, P < 0.01), and connexin (Cx)-43 lateralization compared with diabetic mice. Proteomic analysis showed a down-regulation of the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway and upstream activation of sirtuins in the heart of diabetic mice treated with EMPA compared with diabetic mice. Because sirtuin activation leads to the modulation of cardiomyogenic transcription factors, we analysed the DNA binding activity to serum response elements (SRE) of serum response factor (SRF) by electromobility shift assay. Compared with diabetic mice [0.5 ± 0.01 densitometric units (DU)], non-diabetic mice treated with EMPA (2.2 ± 0.01 DU, P < 0.01) and diabetic mice treated with EMPA (2.0 ± 0.1 DU, P < 0.01) significantly increased SRF binding activity to SRE, paralleled by increased cardiac actin expression (4.1 ± 0.1 vs. 2.2 ± 0.01 target protein/ß-actin ratio, P < 0.01). EMPA significantly reversed cardiac dysfunction on echocardiography in diabetic mice and inhibited excessive autophagy in high-glucose-treated cardiomyocytes by inhibiting the autophagy inducer glycogen synthase kinase 3 beta (GSK3ß), leading to reactivation of cardiomyogenic transcription factors. CONCLUSION: Taken together, our results describe a novel paradigm in which EMPA inhibits hyperactivation of autophagy through the AMPK/GSK3ß signalling pathway in the context of diabetes.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Camundongos , Masculino , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteômica , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo , Glucose/metabolismo , Autofagia , Diabetes Mellitus/metabolismo
6.
Front Cardiovasc Med ; 9: 916616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966553

RESUMO

An anomalous aortic origin of a coronary artery (AAOCA) from the opposite sinus, with an interarterial course, has been associated with an increased risk of myocardial ischemia and sudden death. As the exact pathophysiology of AAOCA is not well understood, the clinical management is also not well defined. With increased use of non-invasive imaging, the diagnosis of AAOCA is increasing and the association of anomalous origin and atherosclerotic disease is becoming a more important topic. We report a rare case of AAOCA chronic total occlusion (CTO). A 40-year-old Caucasian man was referred for invasive coronary angiography (ICA) due to typical chest pain and positive myocardial scintigraphy. ICA demonstrated CTO of an anomalous right coronary artery (ARCA) originating from the left side of the ascending aorta with an interarterial course. There was no lesion in the left coronary artery. During the procedure, unexpected rupture of the coronary artery occurred after dilatation with a small balloon at low pressure. The complication in this case was handled with good procedural final result but was an occasion for a food for thought. Coronary artery perforations are rare but life-threatening procedural complications that are usually caused by predisposing anatomical and procedural factors. We issue a warning on the risk of complications during complex percutaneous coronary intervention of these arteries, and we reconsidered the pathophysiology of the anomaly in a way that could change the approach to the disease. Based on this complication, we hypothesized that the wall of the artery could be fragile due to histopathological alterations, which could have a role in the pathophysiology of coronary malignancy. Future autopsy studies should be focused on the analysis of the arterial wall of the patient affected by sudden death with this anomaly.

7.
J Cell Mol Med ; 26(5): 1380-1391, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122387

RESUMO

Ponatinib (PON), a tyrosine kinase inhibitor approved in chronic myeloid leukaemia, has proven cardiovascular toxicity. We assessed mechanisms of sex-related PON-induced cardiotoxicity and identified rescue strategies in a murine model. PON+scrambled siRNA-treated male mice had a higher number of TUNEL-positive cells (%TdT+6.12 ± 0.17), higher percentage of SA-ß-gal-positive senescent cardiac area (%SA-ß-gal 1.41 ± 0.59) and a lower reactivity degree (RD) for the survival marker Bmi1 [Abs (OD) 5000 ± 703] compared to female (%TdT+3.75 ± 0.35; %SA-ß-gal 0.77 ± 0.02; Bmi1 [Abs (OD) 8567 ± 2173]. Proteomics analysis of cardiac tissue showed downstream activation of cell death in PON+siRNA scrambled compared to vehicle or PON+siRNA-Notch1-treated male mice. Upstream analysis showed beta-oestradiol activation, and downstream analysis showed activation of cell survival and inhibition of cell death in PON+scrambled siRNA compared to vehicle or PON+siRNA-Notch1-treated female mice. PON+scrambled siRNA-treated mice also had a downregulation of cardiac actin-more marked in males-and vessel density-more marked in females. Female hearts showed greater cardiac fibrosis than their male counterparts at baseline, with no significant change after PON treatment. PON+siRNA-scrambled mice had less fibrosis than vehicle or PON+siRNA-Notch1-treated mice. The left ventricular systolic dysfunction showed by PON+scrambled siRNA-treated mice (male %EF 28 ± 9; female %EF 36 ± 7) was reversed in both PON+siRNA-Notch1-treated male (%EF 53 ± 9) and female mice (%EF 52 ± 8). We report sex-related differential susceptibility and Notch1 modulation in PON-induced cardiotoxicity. This can help to identify biomarkers and potential mechanisms underlying sex-related differences in PON-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Piridazinas , Animais , Cardiotoxicidade/etiologia , Modelos Animais de Doenças , Feminino , Imidazóis , Masculino , Camundongos , Piridazinas/farmacologia , RNA Interferente Pequeno
8.
Artigo em Inglês | MEDLINE | ID: mdl-34909660

RESUMO

This article summarizes the current literature and documents new evidence concerning drug-drug interactions (DDI) stemming from pharmacogenomic and circadian rhythm determinants of therapies used to treat common cardiovascular diseases (CVD), such as atherosclerosis and hypertension. Patients with CVD often have more than one pathophysiologic condition, namely metabolic syndromes, hypertension, hyperlipidemia, and hyperglycemia, among others, which necessitate polytherapeutic or polypharmaceutic management. Interactions between drugs, drugs and food/food supplements, or drugs and genetic/epigenetic factors may have adverse impacts on the cardiovascular and other systems of the body. The mechanisms underlying cardiovascular DDI may involve the formation of a complex pharmacointeractome, including the absorption, distribution, metabolism, and elimination of drugs, which affect their respective bioavailability, efficacy, and/or harmful metabolites. The pharmacointeractome of cardiovascular drugs is likely operated with endogenous rhythms controlled by circadian clock genes. Basic and clinical investigations have improved the knowledge and understanding of cardiovascular pharmacogenomics and pharmacointeractomes, and additionally they have presented new evidence that the staging of deterministic circadian rhythms, according to the dosing time of drugs, e.g., upon awakening vs. at bedtime, cannot only differentially impact their pharmacokinetics and pharmacodynamics but also mediate agonistic/synergetic or antagonistic DDI. To properly manage CVD patients and avoid DDI, it is important that clinicians have sufficient knowledge of their multiple risk factors, i.e., age, gender, and life style elements (like diet, smoking, psychological stress, and alcohol consumption), and comorbidities, such as diabetes, hypertension, dyslipidemia, and depression, and the potential interactions between genetic or epigenetic background of their prescribed therapeutics.

10.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071707

RESUMO

Cardiac connexins (Cxs) are proteins responsible for proper heart function. They form gap junctions that mediate electrical and chemical signalling throughout the cardiac system, and thus enable a synchronized contraction. Connexins can also individually participate in many signal transduction pathways, interacting with intracellular proteins at various cellular compartments. Altered connexin expression and localization have been described in diseased myocardium and the aim of this study is to assess the involvement of Cx43, Cx26, and some related molecules in ponatinib-induced cardiac toxicity. Ponatinib is a new multi-tyrosine kinase inhibitor that has been successfully used against human malignancies, but its cardiotoxicity remains worrisome. Therefore, understanding its signaling mechanism is important to adopt potential anti cardiac damage strategies. Our experiments were performed on hearts from male and female mice treated with ponatinib and with ponatinib plus siRNA-Notch1 by using immunofluorescence, Western blotting, and proteomic analyses. The altered cardiac function and the change in Cxs expression observed in mice after ponatinib treatment, were results dependent on the Notch1 pathway and sex. Females showed a lower susceptibility to ponatinib than males. The downmodulation of cardiac Cx43, Cx26 and miR-122, high pS368-Cx43 phosphorylation, cell viability and survival activation could represent some of the female adaptative/compensatory reactions to ponatinib cardiotoxicity.


Assuntos
Cardiomiopatias , Conexina 26 , Conexina 43 , Imidazóis , Piridazinas , Fatores Sexuais , Anormalidades Induzidas por Medicamentos , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Cardiotoxicidade , Conexina 26/efeitos dos fármacos , Conexina 26/metabolismo , Conexina 43/efeitos dos fármacos , Conexina 43/metabolismo , Modelos Animais de Doenças , Feminino , Junções Comunicantes/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Imidazóis/efeitos adversos , Imidazóis/farmacologia , Masculino , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteômica , Piridazinas/efeitos adversos , Piridazinas/farmacologia , Receptor Notch1/metabolismo , Transdução de Sinais
11.
J Cell Mol Med ; 25(12): 5381-5390, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949765

RESUMO

Cardiac stromal cells (CSCs) contain a pool of cells with supportive and paracrine functions. Various types of mesenchymal stromal cells (MSCs) can influence CSCs in the cardiac niche through their paracrine activity. Ischaemia/reperfusion (I/R) leads to cell death and reduction of the paracrine activity of CSCs. The forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD), known to potentiate anti-apoptotic, pro-survival and pro-angiogenic activities of MSCs isolated from the adipose tissue (AT-MSCs), may increase CSC survival, favouring their paracrine activities. We aimed at investigating the hypothesis that CSCs feature improved resistance to simulated I/R (SI/R) and increased commitment towards the cardiovascular lineage when preconditioned with conditioned media (CM) or extracellular vesicles (EV) released from AT-MSCs overexpressing TERT and MYOCD (T/M AT-MSCs). Murine CSCs were isolated with the cardiosphere (CSps) isolation technique. T/M AT-MSCs and their secretome improved spontaneous intracellular calcium changes and ryanodine receptor expression in aged CSps. The cytoprotective effect of AT-MSCs was tested in CSCs subjected to SI/R. SI/R induced cell death as compared to normoxia (28 ± 4 vs 10 ± 3%, P = .02). Pre-treatment with CM (15 ± 2, P = .02) or with the EV-enriched fraction (10 ± 1%, P = .02) obtained from mock-transduced AT-MSCs in normoxia reduced cell death after SI/R. The effect was more pronounced with CM (7 ± 1%, P = .01) or the EV-enriched fraction (2 ± 1%, P = .01) obtained from T/M AT-MSCs subjected to SI/R. In parallel, we observed lower expression of the apoptosis marker cleaved caspase-3 and higher expression of cardiac and vascular markers eNOS, sarcomeric α-actinin and cardiac actin. The T/M AT-MSCs secretome exerts a cytoprotective effect and promotes development of CSCs undergoing SI/R towards a cardiovascular phenotype.


Assuntos
Biomarcadores/metabolismo , Doenças Cardiovasculares/terapia , Coração/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Proteínas Nucleares/metabolismo , Traumatismo por Reperfusão/complicações , Telomerase/metabolismo , Transativadores/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Telomerase/genética , Transativadores/genética
12.
Eur Heart J Cardiovasc Imaging ; 22(4): 406-415, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33432333

RESUMO

AIMS: In breast cancer (BC) patients treated with anthracyclines-based therapies, we aim at assessing whether adjuvant drugs impact cardiac function differently and whether their cardiotoxicity has a regional pattern. METHODS AND RESULTS: In a multicentre study, 146 BC patients (56 ± 11 years) were prospectively enrolled and divided into three groups according to the received treatments: AC/EC-Group (doxorubicin or epirubicin + cyclophosphamide), AC/EC/Tax-Group (AC/EC + taxanes), FEC/Tax-Group (fluorouracil + EC + taxanes). Fifty-six patients of the total cohort also received trastuzumab. Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) were calculated before starting chemotherapy (T0), at 3 months (T3), at 6 (T6), and 12 months (T12). A ≥10% drop of EF, while remaining within the normal range, was reached at T6 in 25.3% of patients from the whole cohort with an early decrease only in FEC/Tax-Group (P = 0.04). A ≥15% GLS reduction was observed in many more (61.6%) patients. GLS decreased early both in the whole population (P < 0.001) and in the subgroups. The FEC-Tax Group showed the worst GLS at T6. Trastuzumab further worsened GLS at T12 (P = 0.031). A significant reduction of GLS was observed in all LV segments and was more relevant in the anterior septum and apex. CONCLUSIONS: The decrease of GLS is more precocious and pronounced in BC patients who received FEC + taxanes. Cardiac function further worsens after 6 months of adjuvant trastuzumab. All LV segments are damaged, with the anterior septum and the apex showing the greatest impairments.


Assuntos
Neoplasias da Mama , Cardiologia , Preparações Farmacêuticas , Disfunção Ventricular Esquerda , Antraciclinas/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Cardiotoxicidade/diagnóstico por imagem , Ecocardiografia , Feminino , Humanos , Itália , Volume Sistólico , Trastuzumab/efeitos adversos , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/diagnóstico por imagem , Função Ventricular Esquerda
13.
Vascul Pharmacol ; 135: 106807, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130246

RESUMO

AIM: Cell therapies are hampered by poor survival and growth of grafts. We tested whether forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD) improves post-infarct revascularization and tissue repair by adipose tissue-derived mesenchymal stromal cells (AT-MSCs). METHODS AND RESULTS: We transplanted AT-MSCs overexpressing MYOCD and TERT in a murine model of acute myocardial infarction (AMI). We characterized paracrine effects of AT-MSCs. When transplanted into infarcted hearts of C57BL/6 mice, AT-MSCs overexpressing TERT and MYOCD decreased scar tissue and the intra-scar CD3 and B220 lymphocyte infiltration; and increased arteriolar density as well as ejection fraction compared with saline or mock-transduced AT-MSCs. These effects were accompanied by higher persistence of the injected cells in the heart, increased numbers of Ki-67+ and CD117+ cells, and the expression of cardiac actin and ß-myosin heavy chain. Intramyocardial delivery of the secretome and its extracellular vesicle (EV)-enriched fraction also decreased scar tissue formation and increased arteriolar density in the murine AMI model. Proteomic analysis of AT-MSCs-EV-enriched fraction predicted the activation of vascular development and the inhibition of immune cell trafficking. Elevated concentrations of miR-320a, miR-150-5p and miR-126-3p associated with regulation of apoptosis and vasculogenesis were confirmed in the AT-MSCs-EV-enriched fraction. CONCLUSIONS: AT-MSCs overexpressing TERT and MYOCD promote persistence of transplanted aged AT-MSCs and enhance arteriolar density in a murine model of AMI. EV-enriched fraction is the component of the paracrine secretion by AT-MSCs with pro-angiogenic and anti-fibrotic activities.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/enzimologia , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Proteínas Nucleares/metabolismo , Regeneração , Telomerase/metabolismo , Transativadores/metabolismo , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/enzimologia , Vesículas Extracelulares/transplante , Fibrose , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Proteínas Nucleares/genética , Comunicação Parácrina , Recuperação de Função Fisiológica , Transdução de Sinais , Telomerase/genética , Transativadores/genética
14.
J Cell Mol Med ; 24(21): 12331-12340, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940423

RESUMO

The sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin reduces heart failure in diabetes, but underlying mechanisms remain elusive. We hypothesized that empagliflozin could counteract the senescence of cardiac stromal cells (CSC), the action of which limits cardiac damage and cardiac fibrosis in diabetic-like conditions in vitro and in vivo. CSC were isolated from murine heart biopsies (n = 5) through cardiosphere (CSp) formation and incubated for 3 or 48 hours with 5.5 mmol/L normal glucose (NG), high glucose (12-5 and 30.5 mmol/L, HG) or a hyperosmolar control of mannitol (HM) in the presence or absence of empagliflozin 100 nmol/L. The senescent CSC status was verified by ß-gal staining and expression of the pro-survival marker Akt (pAkt) and the pro-inflammatory marker p38 (p-P38). The cardiac effects of empagliflozin were also studied in vivo by echocardiography and by histology in a murine model of streptozotocin (STZ)-induced diabetes. Compared to NG, incubations with HG and HM significantly reduced the number of CSps, increased the ß-gal-positive CSC and P-p38, while decreasing pAkt, all reversed by empagliflozin (P < .01). Empagliflozin also reversed cardiac dysfunction, cardiac fibrosis and cell senescence in mice with (STZ)-induced diabetes (P < .01). Empagliflozin counteracts the pro-senescence effect of HG and of hyperosmolar stress on CSC, and improves cardiac function via decreasing cardiac fibrosis and senescence in diabetic mice, possibly through SGLT2 off-target effects. These effects may explain empagliflozin unexpected benefits on cardiac function in diabetic patients.


Assuntos
Compostos Benzidrílicos/farmacologia , Senescência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Glucosídeos/farmacologia , Miocárdio/metabolismo , Células Estromais/efeitos dos fármacos , Animais , Biópsia , Sobrevivência Celular , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Insuficiência Cardíaca/fisiopatologia , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transportador 2 de Glucose-Sódio/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
15.
Cardiovasc Res ; 116(11): 1820-1834, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32683451

RESUMO

In western countries, cardiovascular (CV) disease and cancer are the leading causes of death in the ageing population. Recent epidemiological data suggest that cancer is more frequent in patients with prevalent or incident CV disease, in particular, heart failure (HF). Indeed, there is a tight link in terms of shared risk factors and mechanisms between HF and cancer. HF induced by anticancer therapies has been extensively studied, primarily focusing on the toxic effects that anti-tumour treatments exert on cardiomyocytes. In this Cardio-Oncology update, members of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart discuss novel evidence interconnecting cardiac dysfunction and cancer via pathways in which cardiomyocytes may be involved but are not central. In particular, the multiple roles of cardiac stromal cells (endothelial cells and fibroblasts) and inflammatory cells are highlighted. Also, the gut microbiota is depicted as a new player at the crossroads between HF and cancer. Finally, the role of non-coding RNAs in Cardio-Oncology is also addressed. All these insights are expected to fuel additional research efforts in the field of Cardio-Oncology.


Assuntos
Antineoplásicos/efeitos adversos , Cardiopatias/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Cardiotoxicidade , Comunicação Celular , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Mediadores da Inflamação/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neoplasias/complicações , Neoplasias/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Medição de Risco , Fatores de Risco , Transdução de Sinais
16.
Cardiovasc Res ; 116(11): 1805-1819, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32638021

RESUMO

Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.


Assuntos
Cardiopatias/metabolismo , Miocárdio/metabolismo , RNA não Traduzido/metabolismo , Animais , Regulação da Expressão Gênica , Terapia Genética , Cardiopatias/genética , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Humanos , Miocárdio/patologia , RNA não Traduzido/genética , Recuperação de Função Fisiológica , Regeneração , Transdução de Sinais , Função Ventricular Esquerda , Remodelação Ventricular
17.
Am J Hypertens ; 33(8): 726-733, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32421785

RESUMO

BACKGROUND: Masked uncontrolled hypertension (MUCH), that is, nonhypertensive clinic but high out-of-office blood pressure (BP) in treated patients is at increased cardiovascular risk than controlled hypertension (CH), that is, nonhypertensive clinic and out-of-office BP. Using ambulatory BP, MUCH can be defined as daytime and/or nighttime and/or 24-hour BP above thresholds. It is unclear whether different definitions of MUCH have similar prognostic information. This study assessed the prognostic value of MUCH defined by different ambulatory BP criteria. METHODS: Cardiovascular events were evaluated in 738 treated hypertensive patients with nonhypertensive clinic BP. Among them, participants were classified as having CH or daytime MUCH (BP ≥135/85 mm Hg) regardless of nighttime BP (group 1), nighttime MUCH (BP ≥120/70 mm Hg) regardless of daytime BP (group 2), 24-hour MUCH (BP ≥130/80 mm Hg) regardless of daytime or nighttime BP (group 3), daytime MUCH only (group 4), nighttime MUCH only (group 5), and daytime + nighttime MUCH (group 6). RESULTS: We detected 215 (29%), 357 (48.5%), 275 (37%), 42 (5.5%),184 (25%) and 173 (23.5%) patients with MUCH from group 1 to 6, respectively. During the follow-up (10 ± 5 years), 148 events occurred in patients with CH and MUCH. After adjustment for covariates, compared with patients with CH, the adjusted hazard ratio (95% confidence interval) for cardiovascular events was 2.01 (1.45-2.79), 1.53 (1.09-2.15), 1.69 (1.22-2.34), 1.52 (0.80-2.91), 1.15 (0.74-1.80), and 2.29 (1.53-3.42) from group 1 to 6, respectively. CONCLUSIONS: The prognostic impact of MUCH defined according to various ambulatory BP definitions may be different.


Assuntos
Monitorização Ambulatorial da Pressão Arterial , Hipertensão/fisiopatologia , Hipertensão Mascarada/fisiopatologia , Idoso , Anti-Hipertensivos/uso terapêutico , Ritmo Circadiano , Morte Súbita/epidemiologia , Feminino , Insuficiência Cardíaca/epidemiologia , Hospitalização/estatística & dados numéricos , Humanos , Hipertensão/tratamento farmacológico , Masculino , Hipertensão Mascarada/diagnóstico , Hipertensão Mascarada/epidemiologia , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Revascularização Miocárdica/estatística & dados numéricos , Doenças Vasculares Periféricas/cirurgia , Prognóstico , Acidente Vascular Cerebral/epidemiologia , Procedimentos Cirúrgicos Vasculares/estatística & dados numéricos
18.
Vascul Pharmacol ; 130: 106678, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229255

RESUMO

BACKGROUND: Hyperglycemia plays a role in promoting insulin resistance in adipocytes, hepatocytes and myocytes. Its effects on insulin signaling in endothelial cells remain, however, incompletely understood. AIM: To investigate the proteomic and metabolomic profiles of human aortic endothelial cells (HAECs) exposed to insulin, normal glucose (NG), high glucose (HG) or its hyperosmolar control high mannitol (HM), and to examine whether and how HG or HM may promote insulin resistance. METHODS AND RESULTS: We exposed HAECs to HG and HM in shorter (3 h) and longer-term experiments (24 h), followed by insulin treatment for 45 min. Label-free proteomics and network analysis showed a downregulation of proteins linked to the PI3K-Akt/mTOR/eNOS signaling pathway in HAECs. Metabolomic profiling showed decreased levels of "odd-chain acylcarnitines" such as C3. At immunoblotting, HG or HM blunted insulin ability to activate the PI3K/AKT/eNOS pathway, which was reverted through a silencing of aquaporin 1 (AQP1) and Tonicity enhancer binding protein (TonEBP), while inducing p-P38 and pERK1/2. CONCLUSIONS: HG impairs the PI3K/AKT/eNOS pathway and shifts insulin signaling towards the activation of mitogenic and pro-inflammatory effectors, such as p38 and ERK1/2. These effects may explain the progression of insulin resistance as a result of endothelial glucotoxicity.


Assuntos
Células Endoteliais/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/toxicidade , Hiperglicemia/metabolismo , Resistência à Insulina , Insulina/farmacologia , Aquaporina 1/genética , Aquaporina 1/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/fisiopatologia , Manitol/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Concentração Osmolar , Pressão Osmótica/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
J Clin Med ; 9(3)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197359

RESUMO

Ponatinib, a third-generation tyrosine kinase inhibitor (TKI), is the only approved TKI that is effective against T315I mutations in patients with chronic myeloid leukemia (CML). Specific activation of Notch signaling in CML cells by ponatinib can be considered as the "on-target effect" on the tumor and represents a therapeutic approach for CML. Nevertheless, ponatinib-induced vascular toxicity remains a serious concern, with underlying mechanisms being poorly understood. We aimed to determine the mechanisms of ponatinib-induced vascular toxicity, defining associated signaling pathways and identifying potential rescue strategies. We exposed human umbilical endothelial cells (HUVECs) to ponatinib or vehicle in the presence or absence of the neutralizing factor anti-Notch-1 antibody for exposure times of 0-72 h. Label-free proteomics and network analysis showed that protein cargo of HUVECs treated with ponatinib triggered apoptosis and inhibited vasculature development. We validated the proteomic data showing the inhibition of matrigel tube formation, an up-regulation of cleaved caspase-3 and a downregulation of phosphorylated AKT and phosphorylated eNOS. We delineated the signaling of ponatinib-induced vascular toxicity, demonstrating that ponatinib inhibits endothelial survival, reduces angiogenesis and induces endothelial senescence and apoptosis via the Notch-1 pathway. Ponatinib induced endothelial toxicity in vitro. Hyperactivation of Notch-1 in the vessels can lead to abnormal vascular development and vascular dysfunction. By hyperactivating Notch-1 in the vessels, ponatinib exerts an "on-target off tumor effect", which leads to deleterious effects and may explain the drug's vasculotoxicity. Selective blockade of Notch-1 prevented ponatinib-induced vascular toxicity.

20.
Vascul Pharmacol ; 125-126: 106648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31904543

RESUMO

BACKGROUND AND AIMS: Pulmonary hypertension (PH) is associated with higher mortality and morbidity after valvular heart surgery, mainly through its adverse effect on right ventricular hemodynamic. Recently, the European Society of Cardiology (ESC) PH guidelines introduced a PH probability grading that lists additional parameters related to right ventricular dimensions. We evaluated the impact of such score on short- and mid-term outcomes in patients undergoing left heart valvular surgery. METHODS AND RESULTS: We included 60 consecutive patients (mean age 70 ±â€¯9 years) undergoing left heart valvular surgery with or without coronary artery bypass. Patients were divided into 3 groups according to the PH probability: "low" (n = 18), "intermediate" (n = 18), or "high" (n = 24). The high PH probability group had higher rate of World Health Organization-Functional Class (WHO-FC) III and IV, hemodynamic complications, deaths, major bleeding events and infections after heart surgery than the other groups. A "high" PH probability was associated with reduced right ventricular systolic function, as measured by the fractional area change (FAC), but not with the tricuspid annular plane systolic excursion (TAPSE). CONCLUSION: The high PH probability as evaluated by the ESC PH echocardiographic probability model, is associated with increased short- and mid-term mortality and morbidity and reduced right ventricular systolic function after cardiac surgery, Thus, additional echocardiographic parameters assessing PH probability are valuable tools to stratify risk in patients undergoing cardiac surgery.


Assuntos
Valva Aórtica/cirurgia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Regras de Decisão Clínica , Ecocardiografia , Doenças das Valvas Cardíacas/cirurgia , Hipertensão Pulmonar/etiologia , Valva Mitral/cirurgia , Idoso , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/fisiopatologia , Procedimentos Cirúrgicos Cardíacos/mortalidade , Feminino , Doenças das Valvas Cardíacas/diagnóstico por imagem , Doenças das Valvas Cardíacas/mortalidade , Doenças das Valvas Cardíacas/fisiopatologia , Hemodinâmica , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/mortalidade , Hipertensão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiopatologia , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Função Ventricular Esquerda , Função Ventricular Direita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA