Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931494

RESUMO

Due to limitations in current motion tracking technologies and increasing interest in alternative sensors for motion tracking both inside and outside the MRI system, in this study we share our preliminary experience with three alternative sensors utilizing diverse technologies and interactions with tissue to monitor motion of the body surface, respiratory-related motion of major organs, and non-respiratory motion of deep-seated organs. These consist of (1) a Pilot-Tone RF transmitter combined with deep learning algorithms for tracking liver motion, (2) a single-channel ultrasound transducer with deep learning for monitoring bladder motion, and (3) a 3D Time-of-Flight camera for observing the motion of the anterior torso surface. Additionally, we demonstrate the capability of these sensors to simultaneously capture motion data outside the MRI environment, which is particularly relevant for procedures like radiation therapy, where motion status could be related to previously characterized cyclical anatomical data. Our findings indicate that the ultrasound sensor can track motion in deep-seated organs (bladder) as well as respiratory-related motion. The Time-of-Flight camera offers ease of interpretation and performs well in detecting surface motion (respiration). The Pilot-Tone demonstrates efficacy in tracking bulk respiratory motion and motion of major organs (liver). Simultaneous use of all three sensors could provide complementary motion information outside the MRI bore, providing potential value for motion tracking during position-sensitive treatments such as radiation therapy.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Respiração , Fígado/diagnóstico por imagem , Fígado/fisiologia , Movimento/fisiologia , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/fisiologia , Algoritmos , Aprendizado Profundo , Movimento (Física) , Ultrassonografia/métodos
2.
Phys Med Biol ; 67(2)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34891142

RESUMO

Breathing motion can displace internal organs by up to several cm; as such, it is a primary factor limiting image quality in medical imaging. Motion can also complicate matters when trying to fuse images from different modalities, acquired at different locations and/or on different days. Currently available devices for monitoring breathing motion often do so indirectly, by detecting changes in the outline of the torso rather than the internal motion itself, and these devices are often fixed to floors, ceilings or walls, and thus cannot accompany patients from one location to another. We have developed small ultrasound-based sensors, referred to as 'organ configuration motion' (OCM) sensors, that attach to the skin and provide rich motion-sensitive information. In the present work we tested the ability of OCM sensors to enable respiratory gating duringin vivoPET imaging. A motion phantom involving an FDG solution was assembled, and two cancer patients scheduled for a clinical PET/CT exam were recruited for this study. OCM signals were used to help reconstruct phantom andin vivodata into time series of motion-resolved images. As expected, the motion-resolved images captured the underlying motion. In Patient #1, a single large lesion proved to be mostly stationary through the breathing cycle. However, in Patient #2, several small lesions were mobile during breathing, and our proposed new approach captured their breathing-related displacements. In summary, a relatively inexpensive hardware solution was developed here for respiration monitoring. Because the proposed sensors attach to the skin, as opposed to walls or ceilings, they can accompany patients from one procedure to the next, potentially allowing data gathered in different places and at different times to be combined and compared in ways that account for breathing motion.


Assuntos
Imagem Multimodal , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Movimento (Física) , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos
4.
Invest Radiol ; 54(4): 238-246, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30601292

RESUMO

PURPOSE: The aim of this study was to improve the geometric fidelity and spatial resolution of multi-b diffusion-weighted magnetic resonance imaging of the prostate. MATERIALS AND METHODS: An accelerated segmented diffusion imaging sequence was developed and evaluated in 25 patients undergoing multiparametric magnetic resonance imaging examinations of the prostate. A reduced field of view was acquired using an endorectal coil. The number of sampled diffusion weightings, or b-factors, was increased to allow estimation of tissue perfusion based on the intravoxel incoherent motion (IVIM) model. Apparent diffusion coefficients measured with the proposed segmented method were compared with those obtained with conventional single-shot echo-planar imaging (EPI). RESULTS: Compared with single-shot EPI, the segmented method resulted in faster acquisition with 2-fold improvement in spatial resolution and a greater than 3-fold improvement in geometric fidelity. Apparent diffusion coefficient values measured with the novel sequence demonstrated excellent agreement with those obtained from the conventional scan (R = 0.91 for bmax = 500 s/mm and R = 0.89 for bmax = 1400 s/mm). The IVIM perfusion fraction was 4.0% ± 2.7% for normal peripheral zone, 6.6% ± 3.6% for normal transition zone, and 4.4% ± 2.9% for suspected tumor lesions. CONCLUSIONS: The proposed accelerated segmented prostate diffusion imaging sequence achieved improvements in both spatial resolution and geometric fidelity, along with concurrent quantification of IVIM perfusion.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Humanos , Masculino , Perfusão , Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes
5.
Quant Imaging Med Surg ; 2(1): 21-32, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22773966

RESUMO

The capability to image temperature is a very attractive feature of MRI and has been actively exploited for guiding minimally-invasive thermal therapies. Among many MR-based temperature-sensitive approaches, proton resonance frequency (PRF) thermometry provides the advantage of excellent linearity of signal with temperature over a large temperature range. Furthermore, the PRF shift has been shown to be fairly independent of tissue type and thermal history. For these reasons, PRF method has evolved into the most widely used MR-based thermometry method. In the present paper, the basic principles of PRF-based temperature mapping will be reviewed, along with associated pulse sequence designs. Technical advancements aimed at increasing the imaging speed and/or temperature accuracy of PRF-based thermometry sequences, such as image acceleration, fat suppression, reduced field-of-view imaging, as well as motion tracking and correction, will be discussed. The development of accurate MR thermometry methods applicable to moving organs with non-negligible fat content represents a very challenging goal, but recent developments suggest that this goal may be achieved. If so, MR-guided thermal therapies may be expected to play an increasingly-important therapeutic and palliative role, as a minimally-invasive alternative to surgery.

6.
Magn Reson Med ; 68(5): 1376-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22648701

RESUMO

The purpose of this work was to evaluate a previously proposed approach that aims to improve the point spread function (PSF) of MR spectroscopic imaging (MRSI) to avoid corruption by lipid signal arising from neighboring voxels. Retrospective spatial filtering can be used to alter the PSF; however, this either reduces spatial resolution or requires extending the acquisition in k-space at the cost of increased imaging time. Alternatively, the method evaluated here, PSF-choice, can modify the PSF localization to reduce the contamination from adjacent lipids by conforming the signal response more closely to the desired MRSI voxel grid. This is done without increasing scan time or degrading SNR of important metabolites. PSF-choice achieves improvements in spatial localization through modifications to the radiofrequency excitation pulses. An implementation of this method is reported for MRSI of the prostate, where it is demonstrated that, in 13 of 16 pilot prostate MRSI scans, intravoxel spectral contamination from lipid was significantly reduced when using PSF-choice. Phantom studies were also performed that demonstrate, compared with MRSI with standard Fourier phase encoding, out-of-voxel signal contamination of spectra was significantly reduced in MRSI with PSF-choice.


Assuntos
Tecido Adiposo/química , Algoritmos , Artefatos , Lipídeos/análise , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Neoplasias da Próstata/química , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Magn Reson Med ; 55(2): 352-62, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16402371

RESUMO

Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD) is a method to reduce the data acquisition burden in dynamic MRI. The method works by forcing aliased signals to behave in specific ways through time, so that these unwanted signals can be detected and removed. Unexpected events in time, such as displacements caused by breathing, have the potential to disturb the temporal strategy and may affect UNFOLD's ability to suppress aliasing artifacts. This work presents an extension of the UNFOLD method to accommodate temporal encoding disruptions. While the main type of disruption considered here comes from respiratory motion, other types of disruption can be envisioned, such as departures from the usual UNFOLD k-space sampling scheme. This extended version of UNFOLD was incorporated into UNFOLD-sensitivity encoding (UNFOLD-SENSE), and should also be applicable to closely related methods such as temporal SENSE (TSENSE), k-t Broaduse Linear Acquisition Speed up Technique (k-t BLAST), and k-t SENSE. Five patients were imaged with a modified version of a myocardial-perfusion sequence, and UNFOLD was used either alone or in conjunction with SENSE to obtain an acceleration of 2.0 (in three patients) or 3.0 (in two patients). In both cases this extended version of UNFOLD was able to suppress artifacts caused by the presence of breathing motion.


Assuntos
Displasia Arritmogênica Ventricular Direita/diagnóstico , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Artefatos , Meios de Contraste , Gadolínio DTPA , Humanos , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA