Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(11): 2749-2759, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37962609

RESUMO

The protective effect of selenium (Se) against Hg-induced neurotoxicity has been widely investigated; however, the mechanisms behind this interaction have not been fully elucidated yet. In the current work, the role of Se against MeHg+-induced cytotoxicity in the human neuroblastoma cell line (SH-SY5Y) is reported for the first time by tracking Hg uptake and accumulation at the single-cell level by inductively coupled plasma-mass spectrometry in single-cell mode (SC-ICP-MS). The influence of different Se species (SeMet, SeMeSeCys, citrate-SeNPs, and chitosan-SeNPs) on MeHg+ cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. SeMet and SeMeSeCys exhibited protective effects against MeHg+-induced cell death, particularly at high MeHg+ concentrations (LC50). In addition, chitosan-SeNPs showed greater protection compared to citrate-SeNPs when co-exposed with MeHg+. Interestingly, SC-ICP-MS unveiled the heterogeneous distribution of Hg uptake by SH-SY5Y cells. Co-exposure of SeMet and SeMeSeCys with MeHg+ led to a reduction of the amount of Hg accumulated per individual cell, which decreased the maximum level of Hg per cell by half (from 60 fg Hg cell-1 to 30 fg Hg cell-1) when SeMet was present, along with a decrease in the percentage of cells that accumulated the highest quantity of MeHg+. All these data corroborate the protective role of Se against Hg toxicity at the cellular level.


Assuntos
Quitosana , Mercúrio , Compostos de Metilmercúrio , Neuroblastoma , Selênio , Humanos , Selênio/farmacologia , Selênio/metabolismo , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/análise , Quitosana/farmacologia , Mercúrio/análise , Linhagem Celular , Citratos
2.
Antioxidants (Basel) ; 12(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760045

RESUMO

The fortification of foods with bioactive polyphenols aims to improve their functional properties and to provide health benefits. Yet, to exert their benefits, phenolic compounds must be released from the food matrix and absorbed by the small intestine after digestion, so assessing their bioaccessibility is crucial to determine their potential role. This work aims to incorporate Citrus reticulata Blanco peel extracts into wheat bread as a promising opportunity to increase their bioactive potential, along with supporting the sustainable management of citrus-industry waste. A control and a wheat bread enriched at 2% and 4% (w/v) with a phenolic extract from mandarin peels were prepared and analyzed for antioxidant activity and phenolic composition using LC-MS and UV-Vis spectrophotometry. In addition, in vitro digestion was performed, and the digested extracts were analyzed with HPLC-MS/MS. The results showed a significant increase in total flavonoid content (TFC, 2.2 ± 0.1 mg·g-1), antioxidant activity (IC50 = 37 ± 4 mg·g-1), and contents of quercetin, caffeic acid, and hesperidin in the 4% (w/v) enriched bread. Yet, most polyphenols were completely degraded after the in vitro digestion process, barring hesperidin (159 ± 36 µg·g-1), highlighting the contribution of citrus enrichment in the development of an enriched bread with antioxidant potential.

3.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176018

RESUMO

With the goal of combating the multi-faceted Alzheimer's disease (AD), a series of Rivastigmine-Benzimidazole (RIV-BIM) hybrids was recently reported by us as multitarget-directed ligands, thanks to their capacity to tackle important hallmarks of AD. In particular, they exhibited antioxidant activity, acted as cholinesterase inhibitors, and inhibited amyloid-ß (Aß) aggregation. Herein, we moved forward in this project, studying their ability to chelate redox-active biometal ions, Cu(II) and Fe(III), with widely recognized roles in the generation of oxidative reactive species and in protein misfolding and aggregation in both AD and Parkinson's disease (PD). Although Cu(II) chelation showed higher efficiency for the positional isomers of series 5 than those of series 4 of the hybrids, the Aß-aggregation inhibition appears more dependent on their capacity for fibril intercalation than on copper chelation. Since monoamine oxidases (MAOs) are also important targets for the treatment of AD and PD, the capacity of these hybrids to inhibit MAO-A and MAO-B was evaluated, and they showed higher activity and selectivity for MAO-A. The rationalization of the experimental evaluations (metal chelation and MAO inhibition) was supported by computational molecular modeling studies. Finally, some compounds showed also neuroprotective effects in human neuroblastoma (SH-SY5Y cells) upon treatment with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxic metabolite of a Parkinsonian-inducing agent.


Assuntos
Doença de Alzheimer , Neuroblastoma , Doenças Neurodegenerativas , Humanos , Rivastigmina/farmacologia , Compostos Férricos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Monoaminoxidase/metabolismo , Quelantes/farmacologia , Benzimidazóis
4.
Anal Chim Acta ; 1249: 340949, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-36868776

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, representing 80% of the total dementia cases. The "amyloid cascade hypothesis" stablishes that the aggregation of the beta-amyloid protein (Aß42) is the first event that subsequently triggers AD development. Selenium nanoparticles stabilized with chitosan (Ch-SeNPs) have demonstrated excellent anti-amyloidogenic properties in previous works, leading to an improvement of AD aetiology. Here, the in vitro effect of selenium species in AD model cell line has been study to obtain a better assessment of their effects in AD treatment. For this purpose, mouse neuroblastoma (Neuro-2a) and human neuroblastoma (SH-SY5Y) cell lines were used. Cytotoxicity of selenium species, such as selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys) and Ch-SeNPs, has been determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry methods. Intracellular localisation of Ch-SeNPs, and their pathway through SH-SY5Y cell line, have been evaluated by transmission electron microscopy (TEM). The uptake and accumulation of selenium species by both neuroblastoma cell lines have been quantified at single cell level by single cell- Inductively Coupled Plasma with Mass Spectrometry detection (SC-ICP-MS), with a previous optimisation of transport efficiency using gold nanoparticles (AuNPs) ((69 ± 3) %) and 2.5 mm calibration beads ((92 ± 8) %). Results showed that Ch-SeNPs would be more readily accumulated by both cell lines than organic species being accumulation ranges between 1.2 and 89.5 fg Se cell-1 for Neuro-2a and 3.1-129.8 fg Se cell-1 for SH-SY5Y exposed to 250 µM Ch-SeNPs. Data obtained were statistically treated using chemometric tools. These results provide an important insight into the interaction of Ch-SeNPs with neuronal cells, which could support their potential use in AD treatment.


Assuntos
Doença de Alzheimer , Nanopartículas Metálicas , Neuroblastoma , Doenças Neurodegenerativas , Selênio , Animais , Camundongos , Humanos , Ouro , Microscopia Eletrônica de Transmissão
5.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838611

RESUMO

Obtaining polyphenols from horticultural waste is an emerging trend that enables the valorization of resources and the recovery of value-added compounds. However, a pivotal point in the exploitation of these natural extracts is the assessment of their chemical stability. Hence, this study evaluates the effect of temperature storage (20 and -20 °C) and drying methods on the phenolic composition and antioxidant activity of clementine and lemon peel extracts, applying HPLC-DAD-MS, spectrophotometric methods, and chemometric tools. Vacuum-drying treatment at 60 °C proved to be rather suitable for retaining the highest antioxidant activity and the hesperidin, ferulic, and coumaric contents in clementine peel extracts. Lemon extracts showed an increase in phenolic acids after oven-drying at 40 °C, while hesperidin and rutin were sustained better at 60 °C. Hydroethanolic extracts stored for 90 days preserved antioxidant activity and showed an increase in the total phenolic and flavonoid contents in lemon peels, unlike in clementine peels. Additionally, more than 50% of the initial concentration was maintained up to 51 days, highlighting a half-life time of 71 days for hesperidin in lemon peels. Temperature was not significant in the preservation of the polyphenols evaluated, except for in rutin and gallic acid, thus, the extracts could be kept at 20 °C.


Assuntos
Citrus , Hesperidina , Antioxidantes/química , Extratos Vegetais/química , Fenóis , Polifenóis , Citrus/química , Rutina
6.
Appl Microbiol Biotechnol ; 107(4): 1329-1339, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680586

RESUMO

The fruit-origin strain Fructobacillus tropaeoli CRL 2034 can biotransform selenium into seleno-nanoparticles and selenocysteine. The proteomic analysis of F. tropaeoli CRL 2034 exposed to 5 and 100 ppm of Se showed a dose-dependent response since 19 and 77 proteins were deregulated, respectively. In the presence of 5 ppm of Se, the deregulated proteins mainly belonged to the categories of energy production and conversion or had unknown functions, while when cells were grown with 100 ppm of Se, most of the proteins were grouped into amino acid transport and metabolism, nucleotide transport and metabolism, or into unknown functions. However, under both Se conditions, glutathione reductases were overexpressed (1.8-3.1-fold), while mannitol 2-dehydrogenase was downregulated (0.54-0.19-fold), both enzymes related to oxidative stress functions. Mannitol 2-dehydrogenase was the only enzyme found that contained SeCys, and its activity was 1.27-fold increased after 5 ppm of Se exposure. Our results suggest that F. tropaeoli CRL 2034 counteracts Se stress by overexpressing proteins related to oxidative stress resistance and changing the membrane hydrophobicity, which may improve its survival under (food) storage and positively influence its adhesion to intestinal cells. Selenized cells of F. tropaeoli CRL 2034 could be used for producing Se-enriched fermented foods. KEY POINTS: • Selenized cells of F. tropaeoli showed enhanced resistance to oxidative stress. • SeCys was found in the Fructobacillus mannitol 2-dehydrogenase polypeptide chain. • F. tropaeoli mannitol 2-dehydrogenase activity was highest when exposed to selenium.


Assuntos
Selênio , Selênio/química , Frutas/metabolismo , Manitol Desidrogenases/metabolismo , Proteômica , Estresse Oxidativo
7.
Food Res Int ; 160: 111714, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076409

RESUMO

The pharmaceutical and nutraceutical industries benefit greatly from recycling and transforming non-utilized parts of medicinal plants from agro-industrial operations into value added products. Hence, the aim of this work was to study the potential nutraceutical and pharmaceutical applications of Bunium ferulaceum Sm. aerial parts, in order to maximize their value. The phenolic profile of their hydromethanolic extract was determined and its antioxidant activity was evaluated in vitro and in vivo alongside with its anti-inflammatory activity and safety profile. The extract exerted an in vitro antioxidant activity mainly through radical scavenging (DPPH IC50: 14.0 ± 0.3 µg/ml) and iron chelating ability (24 ± 2 µg/ml), while, in vivo, the extract did not cause any mortality or visible signs of acute toxicity at high dose (2000 mg/kg body weight). The supplementation of the extract at different doses improved mice liver redox state by increasing catalase and reduced glutathione levels and reducing lipid peroxidation, without causing any toxicity. Moreover, the extract efficiently inhibited xylene induced ear inflammation (62 %). These different bioactivities were linked to the phenolic compounds present in the extract, particularly, chlorogenic acid (78 ± 6 mg/g extract), rutin (44 ± 2 mg/g extract) and hesperidin (56 ± 9 mg/g extract). However, further studies should be carried out on the isolated major compounds found in the extract to correlate the activity with these compounds or their mixture. The wasted aerial parts of Bunium ferulaceum Sm. proved to be a valuable source of polyphenols and exhibited interesting health promoting effects with no toxicity. Thus, Bunium ferulaceum Sm. aerial parts can be included in nutraceutical formulations or used as functional food and the extracted compounds may be used as an alternative food preservative.


Assuntos
Antioxidantes , Apiaceae , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Camundongos , Fenóis/farmacologia , Componentes Aéreos da Planta , Extratos Vegetais/farmacologia
8.
Anal Bioanal Chem ; 414(8): 2739-2755, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35112149

RESUMO

In this study, an integrated characterisation through polyphenol and caffeine content and antioxidant activity was combined with chemometric analysis to assess the effects of simulated in vitro gastrointestinal digestion on the bioaccessibility of these bioactive compounds from nine different tea infusions. Tea infusions were characterised based on total flavonoids, total polyphenols and antioxidant activity, together with the determination of individual polyphenol content. Fourteen phenolic compounds, including phenolic acids, stilbenes and flavonoids, were selected based on their reported bioactivity and high accessibility, attributed to their low molecular weight. Both polyphenols and caffeine were initially monitored in raw tea infusions and through the different digestion stages (salivary, gastric and duodenal) by capillary high performance liquid chromatography coupled to diode array detection (cHPLC-DAD) and/or HPLC coupled to a triple quadrupole mass analyser (HPLC-MS/MS). Multivariate analysis of the studied bioactives, using principal component analysis and cluster analysis, revealed that the decaffeination process seems to increase the stability and concentration of the compounds evaluated during digestion. The greatest transformations occurred mainly in the gastric and duodenal stages, where low bioactivity indices (IVBA) were shown for resveratrol and caffeic acid (IVBA = 0%). In contrast, the polyphenols gallic acid, chlorogenic acid and quercetin gave rise to their availability in white, green and oolong infusion teas (IVBA > 90%). Furthermore, highly fermented black and pu-erh varieties could be designated as less bioaccessible environments in the duodenum with respect to the tested compounds.


Assuntos
Polifenóis , Espectrometria de Massas em Tandem , Antioxidantes/análise , Quimiometria , Cromatografia Líquida de Alta Pressão , Digestão , Polifenóis/análise
9.
J Chromatogr A ; 1644: 462128, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33845427

RESUMO

A simple and efficient low-cost matrix solid phase dispersion (MSPD) extraction assisted by TiO2 nanoparticles and diatomaceous earth has been developed for the extraction of phenolic compounds from grape and grape pomace wastes. Experimental conditions for MSPD extraction were optimized by a factorial design and a surface response methodology. The simultaneous identification and quantification of eight main natural polyphenols (caffeic, p-coumaric, dihydroxybenzoic and gallic acid, rutin, resveratrol, quercetin and catechin) was possible by combining MSPD and capillary liquid chromatography coupled to a diode array detection and a mass simple quadrupole analyzer (cLC-DAD-MS). Good linearity and acceptable LOD (0.05-62 µg·g-1) and LOQ (0.2-207 µg·g-1) were obtained. The quantities of extracted polyphenols were within 2.4 and 333 µg·g-1, with catechin and rutin the most abundant compounds in grape pomace and grape wastes, respectively. Furthermore, considering the prospective uses of the winery bioresidues, the extracts have been characterised in terms of bioactive properties (several antioxidant activities and bacterial inhibition against Staphylococcus aureus, Escherichia coli and Pseudomona aeruginosa) and parameters such as total polyphenol and total flavonoid content. The high antioxidant activity (IC50 5.0 ± 0.4 µg ·g-1 against DPPH radical) and antibacterial activity (2.2 ± 0.3 mg·mL-1) suggests that the methodology developed is efficient, rapid and promising for the extraction of phenolic compounds with potential application as bioactive ingredients in food and cosmetic industries.


Assuntos
Nanopartículas/química , Polifenóis/análise , Extração em Fase Sólida/métodos , Titânio/química , Vitis/química , Animais , Antioxidantes/análise , Cromatografia Líquida , Análise Multivariada , Extratos Vegetais/química , Análise de Componente Principal , Estudos Prospectivos , Reprodutibilidade dos Testes , Suínos
10.
J Ethnopharmacol ; 265: 113347, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32890715

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The members of the genus Ranunculus have counter-irritating properties and thus, they are traditionally used for treating anti-inflammatory disorders and other skin conditions. Ranunculus macrophyllus Desf. is a wild medicinal plant growing in Algeria and traditionally used to treat some cutaneous skin disorders. AIM: The aim of this study was to characterize the composition of the ethyl acetate and n-butanol extracts from Ranunculus macrophyllus Desf. as well as to elucidate and to compare their effect against acute skin inflammation. Moreover, both the antioxidant activity and the acute toxicity of the plant extracts were also studied. MATERIALS AND METHODS: Spectrophotometric and chromatographic methods were employed to identify and quantify phenolic compounds and triterpenoids from R. macrophyllus Desf. fractions. The antioxidant activity was estimated using the phosphomolebdenum, DPPH, reducing power and ß-carotene bleaching assays. The ethyl acetate and n-butanol extracts were screened for their anti-inflammatory activities using ex-vivo membrane stabilizing assays and in-vivo acute skin inflammation model. RESULTS: Ethyl acetate fraction showed the highest amounts of total phenolic compounds (413 ± 4 µg GAE/mg extract) and triterpenoids (70.4 ± 1.8 µg UAE/mg extract). Rutin, hesperidin, myricetin and kaempferol were the major compounds identified in the different fractions. Ethyl acetate fraction exhibited strong DPPH• radical scavenging ability (IC50 1.6 ± 0.2 µg/mL), high total antioxidant capacity (447 ± 7 µg AAE/mg extract) and reducing power (514 ± 8 µg AAE/mg extract). Ethyl acetate fraction inhibited (73.4 ± 0.3) % of linoleic acid peroxidation. Ethyl acetate and n-butanol fractions did not have any visible toxicity at 2000 mg/kg and presented excellent membrane stabilizing ability. The inhibition of xylene induced ear inflammation was (38 ± 4) % and (46 ± 1) % for RM-B and RM-EA, respectively. CONCLUSIONS: The high content of both phenolic compounds and triterpenoids combined with the remarkable anti-inflammatory effect and antioxidant activity of ethyl acetate and n-butanol extracts from R. macrophyllus Desf. support the wide spread use of this traditional plant on some skin disorders (inflammatory skin disorders).


Assuntos
Anti-Inflamatórios/farmacologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Ranunculus/química , 1-Butanol/química , Acetatos/química , Argélia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Modelos Animais de Doenças , Feminino , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Camundongos , Fenóis/isolamento & purificação , Extratos Vegetais/química
11.
Anal Bioanal Chem ; 412(24): 6485-6497, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32322953

RESUMO

Extracellular accumulation of amyloid beta peptide (Aß) is believed to be one of the main factors responsible for neurodegeneration in Alzheimer's disease (AD). Metals could induce Aß aggregation, by their redox activity or binding properties to amyloid ß fibrils, leading to their accumulation and deposition outside neurons. For this reason, metal chelation may have an acknowledged part to play in AD prevention and treatment. In the current work, the role of different selenium species, including selenium nanoparticles, in Aß aggregation, was studied by evaluating their metal-chelating properties and their ability both to inhibit metal-induced Aß1-42 aggregation fibrils and to disaggregate them once formed. Transition biometals such as Fe(II), Cu(II), and Zn(II) at 50 µM were selected to establish the in vitro models. The DPPH assay was used to determine the antioxidant capacity of the evaluated selenium species. Selenium nanoparticles stabilized with chitosan (Ch-SeNPs) and with both chitosan and chlorogenic acid polyphenol (CGA@ChSeNPs) showed the highest antioxidant properties with EC50 of 0.9 and 0.07 mM, respectively. UV-Vis and d1(UV-Vis) spectra also revealed that selenium species, in particular selenomethionine (SeMet), were able to interact with metals. Regarding Aß1-42 incubation experiments, Fe(II), Cu(II), and Zn(II) induced Aß aggregation, in a similar way to most of the evaluated selenium species. However, Ch-SeNPs produced a high inhibition of metal-induced Aß aggregation, as well as a high disaggregation capacity of Aß fibrils in both the presence and absence of biometals, in addition to reducing the length and width (20% of reduction in the presence of Zn(II)) of the generated Aß fibrils. Graphical abstract.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/farmacologia , Metais/efeitos adversos , Agregados Proteicos/efeitos dos fármacos , Selênio/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Antioxidantes/química , Cobre/efeitos adversos , Humanos , Ferro/efeitos adversos , Nanopartículas/química , Agregação Patológica de Proteínas/induzido quimicamente , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Selênio/química , Zinco/efeitos adversos
12.
Waste Manag ; 96: 15-24, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376959

RESUMO

A solid-liquid extraction method using ethanol-water mixtures was combined with cLC-DAD, LC-MS/MS and chemometric analyses for establishing the optimum extraction conditions of valuable polyphenols from spent coffee grounds. Chlorogenic and p-coumaric acids were the most abundant polyphenols found, ranging from 0.02 to 4.8 mg g-1 and 0.173-0.50 mg g-1, respectively. In addition, total polyphenol content (9-29 mg GAE g-1 DW), total flavonoid content (11-27 mg QE g-1 DW), total antioxidant activity (0.3-7 mg GAE g-1 DW) and free radical scavenging ability (DPPH assay, 64-927 µg extract g-1 at EC50) of obtained extracts were determined. Response surface methodology allowed obtaining predictive models for the extraction of each individual polyphenol. On the other hand, multifactorial ANOVA was used to establish differences between coffee and spent coffee ground extracts. Principal component analysis was also employed to relate antioxidant activities, total polyphenol and total flavonoid contents with both the polyphenols extracted and the residue coffee type. The overall results suggested that spent coffee grounds could be reused as a promising, inexpensive and natural source of bioactive polyphenols with potential industrial applications, thus minimizing the waste disposal and environmental impact.


Assuntos
Café , Polifenóis , Antioxidantes , Cromatografia Líquida , Espectrometria de Massas em Tandem
13.
Food Chem ; 295: 289-299, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174761

RESUMO

A method combining solid-liquid extraction based on ethanolic aqueous solution, cLC-DAD and chemometrics, was performed to extract and quantify polyphenols from citrus peels. LC-MS/MS was also employed for chemical profiling. The effect of extraction variables on the recovery was examined by experimental factorial design. Data were evaluated using multifactorial-ANOVA, response surface analysis and Principal Component Analysis. trans-Ferulic and p-coumaric antioxidants were found in lower quantities (<1.4 mg·g-1) in all peel extracts. Narangin flavonoid was also identified in all samples, while rutin flavonol was determined in the concentration range of 3.3-4.7 mg·g-1. The most abundant polyphenol in the extracts obtained from all evaluated citrus samples was the flavanone hesperidin (280-673 mg·g-1). Furthermore, peel extracts were evaluated in terms of total polyphenol and flavonoid content, total antioxidant activity and DPPH free radical scavenging. The obtained results suggested that evaluated citrus peel by-products could be reused as a source of polyphenols and transformed into value-added products.


Assuntos
Citrus/química , Polifenóis/análise , Polifenóis/isolamento & purificação , Resíduos/análise , Análise de Variância , Antioxidantes/análise , Antioxidantes/isolamento & purificação , Cromatografia Líquida , Flavonoides/análise , Flavonoides/isolamento & purificação , Hesperidina/análise , Hesperidina/isolamento & purificação , Extratos Vegetais/análise , Extratos Vegetais/química , Análise de Componente Principal , Espectrometria de Massas em Tandem
14.
J Chromatogr A ; 1601: 255-265, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31103200

RESUMO

A simple and efficient low-cost matrix solid-phase dispersion (MSPD) extraction based on TiO2 nanoparticles (NPs) and diatomaceous earth has been developed for the recovery of phenolic compounds from residual brewing yeast. Experimental conditions for MSPD extraction were optimized by an experimental design approach. A screening factorial design plus replicates at the center point, followed by surface response analysis were used. The simultaneous identification and quantification of eleven main natural polyphenols: caffeic, chlorogenic, p-coumaric, 3,4-dihydroxibenzoic, trans-ferulic and gallic acids, kaempferol, myricetin, naringin, quercetin and rutin, was possible by combining MSPD and capillary liquid chromatography couple to a diode array detection system (cLC-DAD) and liquid chromatography couple to a triple quadrupole analyzer (LC-MS/MS). Moreover, residual brewing yeast extracts were evaluated in terms of DPPH (1,1-diphenyl-2 picrylhydrazyl) free radical scavenging activity. Polyphenol-nanoparticle interaction was studied by UV-vis spectroscopy and electron transmission microscopy (TEM), pointing out a stable interplay that assists phenolic isolation. The extracted polyphenol quantities were within the 3.2-1,500 µg g-1 range, and the high antioxidant activity estimated suggested that developed MSPD is a successful, simple, efficient and rapid method for the extraction and recovery of bioactive phenolic compounds, which promotes the reuse and re-evaluation of brewing yeast agri-food by-products.


Assuntos
Técnicas de Química Analítica/métodos , Nanopartículas/química , Fenóis/análise , Saccharomyces cerevisiae/química , Extração em Fase Sólida , Titânio/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Terra de Diatomáceas/química , Fenóis/isolamento & purificação , Polifenóis/análise , Polifenóis/química , Quercetina/análise , Espectrometria de Massas em Tandem
15.
J Proteomics ; 195: 53-65, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30593931

RESUMO

Stable isotope labeling in cell culture (SILAC) was applied for the first time on a lactic acid bacterium strain (L. reuteri CRL1101) for analyzing differential protein expression associated to selenite(Na2SeO3) and selenium nanoparticles (SeNPs) exposure. 57 and 47 proteins were found de-regulated by >1,5 fold in presence of selenite and SeNPs, respectively. Only 16 out of 104 proteins differentially expressed were commonly altered by selenite and SeNPs. The use of a clustered heat map allows us to visualize relations between the de-regulated proteins and exposure conditions. We identified a number of proteins involved in diverse functions and biological processes such as metabolism of carbohydrates, selenium and lipids; folding, sorting and degradation; environmental information and processing. In presence of both, selenite and SeNPs, proteins related to selenium metabolism such as cystathione beta-lyase and oxidoreductases (thioredoxine reductase and NAD/FAD oxidoreductase) were over expressed. Interestingly, the over expression of thioredoxin reductase could protect the host from oxidizing compounds. An over expression of phage proteins and chaperones with selenite was observed; this result and the fact that a lower cell count was detected when selenite was added could indicate that this latter Se species has a more deleterious effect than the nanoparticles.


Assuntos
Proteínas de Bactérias/metabolismo , Limosilactobacillus reuteri/metabolismo , Nanopartículas Metálicas/química , Proteômica , Ácido Selenioso/farmacologia , Selênio/química , Oxirredução/efeitos dos fármacos
16.
Talanta ; 188: 393-403, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029393

RESUMO

The combination of UV-vis spectrophotometry with a chemometric calibration tool based on partial least squares (PLS) has allowed us the development of a multivariate analytical method that simultaneously estimates the concentration and size of mixtures of silver nanoparticles (AgNPs) in environmental water samples. The method is based on changes in the surface plasmon resonance band (SPRB) of AgNPs when they form aggregated/assembled structures with L-cysteine (L-cys). Measurementts were performed by employed a fixed-time kinetics method that implies that the final spectra (response) are obtained by subtstracting the solutions spectra at fixed times. Optimization of experimental conditions affecting aggregation such as time, temperature, pH and concentration of aggregating substance was performed by experimental design and response surface methodologies (RSM). A multivariate calibration model using AgNPs of known diameter size ((20 ±â€¯3), (41 ±â€¯3), (59 ±â€¯5) and (79 ±â€¯7) nm) within a concentration range between 0.62 and 2.5 mg L-1 was constructed by using a mixture experimental design and PLS. The method was finally applied to estimate size and concentration of AgNPs in AgNPs-spiked river and tap water samples. Water samples were spiked with individual, binary and ternary mixtures of AgNPs of different sizes and by using two types of AgNPs: citrate-coated AgNPs (cit-AgNPs) and polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs). A good correspondence was obtained between predicted values and the total amount of AgNPs added with recovery values ranged within 80-160% for the individual mixtures, 68-108% for the binary mixtures and 60-64% for the ternary mixtures of AgNPs. Finally, transmission electron microscopy (TEM) measurements were performed for those cases where discrepancies between the expected and the obtained values were observed. TEM micrographs evidenced the presence of agglomerates or aggregates of AgNPs in some of the mixtures or water tested.

17.
Anal Bioanal Chem ; 408(24): 6659-70, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27497969

RESUMO

Selenium nanoparticles (SeNPs) were incorporated in a flexible multilayer plastic material using a water-base adhesive as vehicle for SeNPs. The antioxidant performance of the original solutions containing spherical SeNPs of 50-60 nm diameter, the adhesive containing these SeNPs, and the final multilayer plastic material to be used as food packaging were quantitatively measured. The radical scavenging capacity due to SeNPs was quantified by a free radical assay developed in the laboratory and by the diphenyl-1-picrylhydrazyl (DPPH) method. DPPH was not efficient to measure the scavenging capacity in the multilayer when the free radical scavenger is not in the surface in contact with it. Several multilayer laminated structures composed by [PET (20 m)-adhesive-LDPE (with variable thickness from 35 to 90 µm)] were prepared and measured, demonstrating for the first time that free radicals derived from oxygen (OH·, O2·, and O2H) cross the PE layer and arrive at the adhesive. SeNPs remain as such after manufacture and the final laminate is stable after 3 months of storage. The antioxidant multilayer is a non-migrating efficient free radical scavenger, able to protect the packaged product versus oxidation and extending the shelf life without being in direct contact with the product. Migration tests of both Se and SeNPs to simulants and hazelnuts demonstrated the non-migrating performance of this new active packaging. Graphical abstract ᅟ.


Assuntos
Embalagem de Alimentos/métodos , Sequestradores de Radicais Livres/química , Nanopartículas/química , Selênio/química , Adesivos/química , Compostos de Bifenilo/química , Qualidade dos Alimentos , Radicais Livres/química , Oxirredução , Picratos/química
18.
Food Chem Toxicol ; 59: 554-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23838314

RESUMO

Methylmercury (MeHg) has been recognized as a very toxic contaminant present in certain foodstuffs that adversely affects health and impairs the normal function of different organs. Experimental studies have shown that selenocompounds play an important role as cellular detoxificant and protective agents against the harmful effects of mercury. The present study examined the potential preventive activities of organic selenocompounds, focused on selenocystine (SeCys), against MeHg-induced toxicity in human HepG2 cells. Combined treatment of SeCys and MeHg protected HepG2 cells against MeHg-induced cell damage, showing this selenocompound a more relevant effect than those of selenium methylselenocysteine and selenium methionine. Co-treatment with SeCys exerted a protective effect against MeHg by restraining ROS generation and glutathione decrease, and through the modulation of antioxidant enzymes activities. In addition, SeCys delayed MeHg-induced apoptosis and prevented extracellular regulated kinases (ERKs) deactivation, as well as p38 and c-Jun N-terminal kinase (JNK) stimulations in comparison to MeHg-treated cells. ERK, JNK and p38 involvement on the protective effect of SeCys against MeHg-induced cell damage was confirmed by using selective inhibitors. All these results indicate that SeCys protects against MeHg-induced cell damage by modulating the redox status and key proteins related to cell stress and survival/proliferation pathways.


Assuntos
Apoptose/efeitos dos fármacos , Cistina/análogos & derivados , Poluentes Ambientais/antagonistas & inibidores , Hepatócitos/efeitos dos fármacos , Compostos de Metilmercúrio/antagonistas & inibidores , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cistina/farmacologia , Poluentes Ambientais/toxicidade , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Concentração Osmolar , Oxirredução , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Selenocisteína/análogos & derivados , Selenocisteína/farmacologia , Selenometionina/farmacologia
19.
Analyst ; 137(22): 5302-11, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23014190

RESUMO

Mercury toxicity and its implications in development are a major concern, due to the major threat to ecosystems and human health that this compound represents. Although some of the effects of methylmercury (MeHg) exposure have been extensively studied, the molecular mechanisms of interaction between this compound and developing organisms are still not completely understood. To provide further insights into these mechanisms, we carried out a quantitative proteomic study (iTRAQ) using zebrafish larvae exposed to 5 µg L(-1) and 25 µg L(-1) MeHg as a model. In this study, a multidimensional approach combining isoelectric focusing (IEF) and strong cation exchange (SCX) followed by reversed phase liquid chromatography prior to MALDI TOF/TOF analysis was employed, which resulted in a substantial increase in proteome coverage. Among the proteins identified, 71 were found de-regulated by more than 1.5-fold, and implicated in embryonic development, protein synthesis, calcium homeostasis and energy production. Furthermore, morphological and histological analysis of exposed larvae was carried out, reflecting changes such as smaller swim bladder, remaining yolk, bent body axis and accumulation of blood in the heart, among others.


Assuntos
Cromatografia Líquida de Alta Pressão , Desenvolvimento Embrionário/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Proteoma/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Cálcio/metabolismo , Cromatografia por Troca Iônica , Cromatografia de Fase Reversa , Metabolismo Energético , Focalização Isoelétrica , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Compostos de Metilmercúrio/química , Peptídeos/análise , Peixe-Zebra/crescimento & desenvolvimento
20.
Anal Bioanal Chem ; 404(2): 315-24, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22535442

RESUMO

Understanding the molecular mechanisms underlying MeHg toxicity and the way in which this molecule interacts with living organisms is a critical point since MeHg represents a well-known risk to ecosystems and human health. We used a quantitative proteomic approach based on stable isotopic labeling by amino acids in cell culture in combination with SDS-PAGE and nanoflow LC-ESI-LTQ for analyzing the differential protein expression of hepatic cells associated to MeHg exposure. Seventy-eight proteins were found de-regulated by more than 1.5-fold. We identified a number of proteins involved in different essential biological processes including apoptosis, mitochondrial dysfunction, cellular trafficking and energy production. Among these proteins, we found several molecules whose de-regulation has been already related to MeHg exposure, thus confirming the usefulness of our discovery approach, and new ones that helped to gain a deeper insight into the biomolecular mechanisms related to MeHg-induced toxicity. Overexpression of several HSPs and the proteasome 26S subunit itself showed the proteasome system as a molecular target of toxic MeHg. As for the interaction networks, the top ranked was the nucleic acid metabolism, where many of the identified de-regulated proteins are involved.


Assuntos
Fígado/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Proteínas/metabolismo , Apoptose , Linhagem Celular Tumoral , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Humanos , Fígado/citologia , Fígado/metabolismo , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA