Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Redox Biol ; 69: 102994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128451

RESUMO

Progression of ß-cell loss in diabetes mellitus is significantly influenced by persistent hyperglycemia. At the cellular level, a number of signaling cascades affect the expression of apoptotic genes, ultimately resulting in ß-cell failure; these cascades have not been elucidated. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) plays a central role in the detoxification of reactive aldehydes generated from endogenous and exogenous sources and protects against mitochondrial deterioration in cells. Here we report that under diabetogenic conditions, ALDH2 is strongly inactivated in ß-cells through CDK5-dependent glutathione antioxidant imbalance by glucose-6-phosphate dehydrogenase (G6PD) degradation. Intriguingly, CDK5 inhibition strengthens mitochondrial antioxidant defense through ALDH2 activation. Mitochondrial ALDH2 activation selectively preserves ß-cells against high-glucose-induced dysfunction by activating AMPK and Hydrogen Sulfide (H2S) signaling. This is associated with the stabilization and enhancement of the activity of G6PD by SIRT2, a cytoplasmic NAD+-dependent deacetylase, and is thereby linked to an elevation in the GSH/GSSG ratio, which leads to the inhibition of mitochondrial dysfunction under high-glucose conditions. Furthermore, treatment with NaHS, an H2S donor, selectively preserves ß-cell function by promoting ALDH2 activity, leading to the inhibition of lipid peroxidation by high-glucose concentrations. Collectively, our results provide the first direct evidence that ALDH2 activation enhances H2S-AMPK-G6PD signaling, leading to improved ß-cell function and survival under high-glucose conditions via the glutathione redox balance.


Assuntos
Sulfeto de Hidrogênio , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Sulfeto de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Aldeído Desidrogenase/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Glutationa/metabolismo , Glucose/metabolismo
2.
Stem Cell Res Ther ; 13(1): 348, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883121

RESUMO

Bone marrow mesenchymal stromal cells (BM-MSCs) have anti-inflammatory and pro-survival properties. Naturally, they do not express human leukocyte antigen class II surface antigens and have immunosuppressive capabilities. Together with their relatively easy accessibility and expansion, they are an attractive tool for organ support in transplantation and regenerative therapy. Autologous BM-MSC transplantation alone or together with transplanted islets improves ß-cell function, graft survival, and glycemic control in diabetes. Albeit MSCs' capacity to transdifferentiate into ß-cell is limited, their protective effects are mediated mainly by paracrine mechanisms through BM-MSCs circulating through the body. Direct cell-cell contact and spontaneous fusion of BM-MSCs with injured cells, although at a very low rate, are further mechanisms of their supportive effect and for tissue regeneration. Diabetes is a disease of long-term chronic inflammation and cell therapy requires stable, highly functional cells. Several tools and protocols have been developed by mimicking natural fusion events to induce and accelerate fusion in vitro to promote ß-cell-specific gene expression in fused cells. BM-MSC-islet fusion before transplantation may be a strategy for long-term islet survival and improved function. This review discusses the cell-protective and anti-inflammatory characteristics of BM-MSCs to boost highly functional insulin-producing cells in vitro and in vivo, and the efficacy of their fusion with ß-cells as a path to promote ß-cell regeneration.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Medula Óssea , Células da Medula Óssea , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 830097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370966

RESUMO

A critical decline of functional insulin-producing pancreatic ß-cells is the central pathologic element of both type 1 and type 2 diabetes. Mammalian Sterile 20-like kinase 1 (MST1) is a key mediator of ß-cell failure and the identification of neratinib as MST1 inhibitor with potent effects on ß-cell survival represents a promising approach for causative diabetes therapy. Here we report a case of robust glycemia and HbA1c normalization in a patient with breast cancer-T2D comorbidity under neratinib, a potent triple kinase inhibitor of HER2/EGFR and MST1. The patient, aged 62 years, was enrolled in the plasmaMATCH clinical trial and received 240 mg neratinib once daily. Neratinib therapy correlated with great improvement in glucose and HbA1c both to physiological levels during the whole treatment period (average reduction of random glucose from 13.6 ± 0.4 to 6.3 ± 0.5 mmol/l and of HbA1c from 82.2 ± 3.9 to 45.6 ± 4.2 mmol/mol before and during neratinib). 18 months later, when neratinib was withdrawn, random glucose rapidly raised together with high blood glucose fluctuations, which reflected in elevated HbA1c levels. This clinical case reports the combination of HER2/EGFR/MST1-inhibition by neratinib for the pharmacological intervention to effectively restore normoglycemia in a patient with poorly controlled T2D and suggests neratinib as potent therapeutic regimen for the cancer-diabetes comorbidity.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Animais , Neoplasias da Mama/complicações , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Controle Glicêmico , Humanos , Mamíferos , Pessoa de Meia-Idade , Quinolinas , Receptor ErbB-2/uso terapêutico
4.
Autophagy ; 17(12): 4494-4496, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34470573

RESUMO

A progressive decline in the macroautophagic/autophagic flux is a hallmark of pancreatic ß-cell failure in type 2 diabetes (T2D) but the responsible intrinsic factors and underlying molecular mechanisms are incompletely understood. A stress-sensitive multicomponent cellular loop of the Hippo pathway kinase LATS2 (large tumor suppressor 2), MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) and autophagy regulates ß-cell survival and metabolic adaptation. Chronic metabolic stress leads to LATS2 hyperactivation which then induces MTORC1, subsequently impairing the cellular autophagic flux and consequently triggering ß-cell death. Reciprocally, under physiological conditions, autophagy controls ß-cell survival by lysosomal degradation of LATS2. These signaling cross-talks and the interaction between autophagy and LATS2 are important for the regulation of ß-cell turnover and functional compensation under metabolic stress.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Autofagia/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Via de Sinalização Hippo , Humanos , Células Secretoras de Insulina/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor/metabolismo
5.
Nat Commun ; 12(1): 4928, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389720

RESUMO

Diabetes results from a decline in functional pancreatic ß-cells, but the molecular mechanisms underlying the pathological ß-cell failure are poorly understood. Here we report that large-tumor suppressor 2 (LATS2), a core component of the Hippo signaling pathway, is activated under diabetic conditions and induces ß-cell apoptosis and impaired function. LATS2 deficiency in ß-cells and primary isolated human islets as well as ß-cell specific LATS2 ablation in mice improves ß-cell viability, insulin secretion and ß-cell mass and ameliorates diabetes development. LATS2 activates mechanistic target of rapamycin complex 1 (mTORC1), a physiological suppressor of autophagy, in ß-cells and genetic and pharmacological inhibition of mTORC1 counteracts the pro-apoptotic action of activated LATS2. We further show a direct interplay between Hippo and autophagy, in which LATS2 is an autophagy substrate. On the other hand, LATS2 regulates ß-cell apoptosis triggered by impaired autophagy suggesting an existence of a stress-sensitive multicomponent cellular loop coordinating ß-cell compensation and survival. Our data reveal an important role for LATS2 in pancreatic ß-cell turnover and suggest LATS2 as a potential therapeutic target to improve pancreatic ß-cell survival and function in diabetes.


Assuntos
Autofagia , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Cultivadas , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Humanos , Células Secretoras de Insulina/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Ratos , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética
6.
Cell Rep ; 36(5): 109490, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348155

RESUMO

Pancreatic ß-cell failure is the key pathogenic element of the complex metabolic deterioration in type 2 diabetes (T2D); its underlying pathomechanism is still elusive. Here, we identify pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 (PHLPP1/2) as phosphatases whose upregulation leads to ß-cell failure in diabetes. PHLPP levels are highly elevated in metabolically stressed human and rodent diabetic ß-cells. Sustained hyper-activation of mechanistic target of rapamycin complex 1 (mTORC1) is the primary mechanism of the PHLPP upregulation linking chronic metabolic stress to ultimate ß-cell death. PHLPPs directly dephosphorylate and regulate activities of ß-cell survival-dependent kinases AKT and MST1, constituting a regulatory triangle loop to control ß-cell apoptosis. Genetic inhibition of PHLPPs markedly improves ß-cell survival and function in experimental models of diabetes in vitro, in vivo, and in primary human T2D islets. Our study presents PHLPPs as targets for functional regenerative therapy of pancreatic ß cells in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/enzimologia , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Apoptose , Sobrevivência Celular , Dieta Hiperlipídica , Feminino , Deleção de Genes , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Modelos Biológicos , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Estresse Fisiológico , Regulação para Cima
7.
Front Endocrinol (Lausanne) ; 12: 697120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290670

RESUMO

Glucagon-like peptide-1 (GLP-1) shows robust protective effects on ß-cell survival and function and GLP-1 based therapies are successfully applied for type-2 diabetes (T2D) and obesity. Another cleavage product of pro-glucagon, Glucagon-like peptide-2 (GLP-2; both GLP-1 and GLP-2 are inactivated by DPP-4) has received little attention in its action inside pancreatic islets. In this study, we investigated GLP-2 production, GLP-2 receptor (GLP-2R) expression and the effect of GLP-2R activation in human islets. Isolated human islets from non-diabetic donors were exposed to diabetogenic conditions: high glucose, palmitate, cytokine mix (IL-1ß/IFN-γ) or Lipopolysaccharide (LPS) in the presence or absence of the DPP4-inhibitor linagliptin, the TLR4 inhibitor TAK-242, the GLP-2R agonist teduglutide and/or its antagonist GLP-2(3-33). Human islets under control conditions secreted active GLP-2 (full-length, non-cleaved by DPP4) into the culture media, which was increased by combined high glucose/palmitate, the cytokine mix and LPS and highly potentiated by linagliptin. Low but reproducible GLP-2R mRNA expression was found in all analyzed human islet isolations from 10 donors, which was reduced by pro-inflammatory stimuli: the cytokine mix and LPS. GLP-2R activation by teduglutide neither affected acute or glucose stimulated insulin secretion nor insulin content. Also, teduglutide had no effect on high glucose/palmitate- or LPS-induced dysfunction in cultured human islets but dampened LPS-induced macrophage-dependent IL1B and IL10 expression, while its antagonist GLP-2(3-33) abolished such reduction. In contrast, the expression of islet macrophage-independent cytokines IL6, IL8 and TNF was not affected by teduglutide. Medium conditioned by teduglutide-exposed human islets attenuated M1-like polarization of human monocyte-derived macrophages, evidenced by a lower mRNA expression of pro-inflammatory cytokines, compared to vehicle treated islets, and a reduced production of itaconate and succinate, marker metabolites of pro-inflammatory macrophages. Our results reveal intra-islet production of GLP-2 and GLP-2R expression in human islets. Despite no impact on ß-cell function, local GLP-2R activation reduced islet inflammation which might be mediated by a crosstalk between endocrine cells and macrophages.


Assuntos
Peptídeo 2 Semelhante ao Glucagon/metabolismo , Inflamação , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Macrófagos/fisiologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Células Cultivadas , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 2/genética , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/fisiologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/efeitos dos fármacos , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Masculino , Pancreatite/imunologia , Pancreatite/metabolismo , Pancreatite/patologia
8.
Trends Biochem Sci ; 45(4): 280-283, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32169174

RESUMO

Signaling modules that integrate the diverse extra- and intracellular inputs to the Hippo pathway were previously unknown. By biochemical and molecular interrogation, Chen et al. established a molecular framework, the RhoA-RHPN-NF2/Kibra-STRIPAK axis, that regulates the status of Hippo core kinases and connects upstream signals to initiate and orchestrate the Hippo pathway.

9.
Nutr Diabetes ; 9(1): 36, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31787760

RESUMO

Obesity is associated with inflammatory macrophages in insulin responsive tissues and the resulting inflammatory response is a major contributor to insulin resistance. In insulin-producing pancreatic islets, the intra-islet accumulation of macrophages is observed in patients of type 2 diabetes (T2D), but such has not been investigated in obese individuals. Here, we show that pro-inflammatory cytokines (IL-1ß, IL-6, and TNF), anti-inflammatory cytokines (IL-10 and TGF-ß) and macrophage polarization markers (CD11c, CD163, and NOS2) were expressed in isolated human islets from non-diabetic donors. Clodronate-mediated depletion of resident macrophages revealed expression of IL1B and IL10 mostly from macrophages, while IL6, TNF, and TGFB1 came largely from a non-macrophage origin in human islets. NOS2 expression came exclusively from non-macrophage cells in non-obese individuals, while it originated also from macrophages in obese donors. Macrophage marker expression of CD68, CD163, and ITGAX was unchanged in islets of non-obese control and obese cohorts. In contrast, IL1B and NOS2 were significantly increased in islets from obese, compared to non-obese individuals, implying a more inflammatory macrophage phenotype in islets in obesity. Our study shows elevated macrophage-associated inflammation in human islets in obesity, which could be an initiating factor to the pro-inflammatory intra-islet milieu and contribute to the higher susceptibility to T2D in obese individuals.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Ilhotas Pancreáticas/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo
10.
Nat Commun ; 10(1): 5015, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676778

RESUMO

The loss of functional insulin-producing ß-cells is a hallmark of diabetes. Mammalian sterile 20-like kinase 1 (MST1) is a key regulator of pancreatic ß-cell death and dysfunction; its deficiency restores functional ß-cells and normoglycemia. The identification of MST1 inhibitors represents a promising approach for a ß-cell-protective diabetes therapy. Here, we identify neratinib, an FDA-approved drug targeting HER2/EGFR dual kinases, as a potent MST1 inhibitor, which improves ß-cell survival under multiple diabetogenic conditions in human islets and INS-1E cells. In a pre-clinical study, neratinib attenuates hyperglycemia and improves ß-cell function, survival and ß-cell mass in type 1 (streptozotocin) and type 2 (obese Leprdb/db) diabetic mouse models. In summary, neratinib is a previously unrecognized inhibitor of MST1 and represents a potential ß-cell-protective drug with proof-of-concept in vitro in human islets and in vivo in rodent models of both type 1 and type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Células Secretoras de Insulina/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Substâncias Protetoras/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
11.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652545

RESUMO

Inflammatory processes in the skin augment collagen degradation due to the up-regulation of matrix metalloproteinases (MMPs). The aim of the present project was to study the specific impact of MMP-3 on collagen loss in skin and its interplay with the collagenase MMP-13 under inflammatory conditions mimicked by the addition of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Skin explants from MMP-3 knock-out (KO) mice or from transgenic (TG) mice overexpressing MMP-3 in the skin and their respective wild-type counterparts (WT and WTT) were incubated ex vivo for eight days. The rate of collagen degradation, measured by released hydroxyproline, was reduced (p < 0.001) in KO skin explants compared to WT control skin but did not differ (p = 0.47) between TG and WTT skin. Treatment with the MMP inhibitor GM6001 reduced hydroxyproline media levels from WT, WTT and TG but not from KO skin explants. TNF-α increased collagen degradation in the WT group (p = 0.0001) only. More of the active form of MMP-13 was observed in the three MMP-3 expressing groups (co-incubation with receptor-associated protein stabilized MMP-13 subforms and enhanced detection in the media). In summary, the innate level of MMP-3 seems responsible for the accelerated loss of cutaneous collagen under inflammatory conditions, possibly via MMP-13 in mice.


Assuntos
Colágeno/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Pele/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Dipeptídeos/farmacologia , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Proteólise , Pele/efeitos dos fármacos
12.
Biochim Biophys Acta Mol Basis Dis ; 1865(1): 86-97, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30287405

RESUMO

Type 2 Diabetes (T2D) is strongly associated with obesity and inflammation. Toll-like receptor-4 (TLR-4) is the major pro-inflammatory pathway with its ligands and downstream products increased systemically in T2D and in at-risk individuals. Detailed mechanisms of the complex proinflammatory response in pancreatic islets remain unknown. In isolated human islets LPS induced IL-1ß, IL-6, IL-8 and TNF production in a TLR4-dependent manner and severely impaired ß-cell survival and function. IL-6 antagonism improved ß-cell function. IL-8, which was identified specifically in α-cells, initiated monocyte migration, a process fully blocked by IL-8 neutralization. The TLR4 response was potentiated in obese donors; with higher IL-1ß, IL-6 and IL-8 expression than in non-obese donors. TLR4 activation leads to a complex multi-cellular inflammatory response in human islets, which involves ß-cell failure, cytokine production and macrophage recruitment to islets. In obesity, the amplified TLR4 response may potentiate ß-cell damage and accelerate diabetes progression.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Inflamação/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade/metabolismo , Receptor 4 Toll-Like/metabolismo , Apoptose , Movimento Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Progressão da Doença , Regulação da Expressão Gênica , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Macrófagos/metabolismo , Obesidade/complicações , Fator de Necrose Tumoral alfa/metabolismo
13.
Trends Endocrinol Metab ; 29(7): 492-509, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29739703

RESUMO

The evolutionarily conserved Hippo pathway is a key regulator of organ size and tissue homeostasis. Its dysregulation is linked to multiple pathological disorders. In addition to regulating development and growth, recent studies show that Hippo pathway components such as MST1/2 and LATS1/2 kinases, as well as YAP/TAZ transcriptional coactivators, are regulated by metabolic pathways and that the Hippo pathway controls metabolic processes at the cellular and organismal levels in physiological and metabolic disease states such as obesity, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), cardiovascular disorders, and cancer. In this review we summarize the connection between key Hippo components and metabolism, and how this interplay regulates cellular metabolism and metabolic pathways. The emerging function of Hippo in the regulation of metabolic homeostasis under physiological and pathological conditions is highlighted.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Via de Sinalização Hippo , Humanos , Fígado/metabolismo , Obesidade/metabolismo , Pâncreas/metabolismo , Transdução de Sinais/genética
14.
Diabetologia ; 60(4): 668-678, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28004151

RESUMO

AIMS/HYPOTHESIS: Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of nutritional status at the cellular and organismic level. While mTORC1 mediates beta cell growth and expansion, its hyperactivation has been observed in pancreatic islets from animal models of type 2 diabetes and leads to beta cell loss. We sought to determine whether such mTORC1 activation occurs in humans with type 2 diabetes or in metabolically stressed human islets and whether mTORC1 blockade can restore beta cell function of diabetic islets. METHODS: Human islets isolated from non-diabetic controls and individuals with type 2 diabetes, as well as human islets and INS-1E cells exposed to increased glucose (22.2 mmol/l), were examined for mTORC1/2 activity by western blotting analysis of phosphorylation of mTORC1 downstream targets ribosomal protein S6 kinase 1 (S6K1), S6 and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) and mTORC2 downstream targets Akt and N-myc downstream regulated 1 (NDRG1). mTORC1/2 complexes' integrity was assessed by immunoprecipitation and subsequent western blot analysis. Cell-type specific expression of activated mTORC1 in human islets was examined by immunostaining of pS6 (Ser 235/236) in human islet sections. Beta cell function was measured by glucose-stimulated insulin secretion (GSIS). RESULTS: While mTORC2 signalling was diminished, mTORC1 activity was markedly increased in islets from patients with type 2 diabetes and in islets and beta cells exposed to increased glucose concentrations. Under high-glucose conditions in metabolically stressed human islets, we identified a reciprocal regulation of different mTOR complexes, with functional upregulation of mTORC1 and downregulation of mTORC2. pS6 immunostaining showed beta cell-specific upregulation of mTORC1 in islets isolated from patients with type 2 diabetes. Inhibition of mTORC1-S6K1 signalling improved GSIS and restored mTORC2 activity in islets from patients with type 2 diabetes as well as in islets isolated from diabetic db/db mice and mice fed a high-fat/high-sucrose diet. CONCLUSIONS/INTERPRETATION: Our data show the aberrant mTORC1 activity in islets from patients with type 2 diabetes, in human islets cultured under diabetes-associated increased glucose conditions and in diabetic mouse islets. This suggests that elevated mTORC1 activation is a striking pathogenic hallmark of islets in type 2 diabetes, contributing to impaired beta cell function and survival in the presence of metabolic stress.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Imunofluorescência , Glucose/farmacologia , Humanos , Imunoprecipitação , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Pessoa de Meia-Idade , Complexos Multiproteicos/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/genética
15.
Oncotarget ; 7(31): 48963-48977, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27374092

RESUMO

Bone marrow mesenchymal stromal cells (MSC) have anti-inflammatory, anti-apoptotic and immunosuppressive properties and are a potent source for cell therapy. Cell fusion has been proposed for rapid generation of functional new reprogrammed cells. In this study, we aimed to establish a fusion protocol of bone marrow-derived human MSCs with the rat beta-cell line (INS-1E) as well as human isolated pancreatic islets in order to generate insulin producing beta-MSCs as a cell-based treatment for diabetes.Human eGFP+ puromycin+ MSCs were co-cultured with either stably mCherry-expressing rat INS-1E cells or human dispersed islet cells and treated with phytohemagglutinin (PHA-P) and polyethylene glycol (PEG) to induce fusion. MSCs and fused cells were selected by puromycin treatment.With an improved fusion protocol, 29.8 ± 2.9% of all MSCs were ß-MSC heterokaryons based on double positivity for mCherry and eGFP.After fusion and puromycin selection, human NKX6.1 and insulin as well as rat Neurod1, Nkx2.2, MafA, Pdx1 and Ins1 mRNA were highly elevated in fused human MSC/INS-1E cells, compared to the mixed control population. Such induction of beta-cell markers was confirmed in fused human MSC/human dispersed islet cells, which showed elevated NEUROD1, NKX2.2, MAFA, PDX1 and insulin mRNA compared to the mixed control. Fused cells had higher insulin content and improved insulin secretion compared to the mixed control and insulin positive beta-MSCs also expressed nuclear PDX1. We established a protocol for fusion of human MSCs and beta cells, which resulted in a beta cell like phenotype. This could be a novel tool for cell-based therapies of diabetes.


Assuntos
Fusão Celular/métodos , Células Secretoras de Insulina/citologia , Células-Tronco Mesenquimais/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células da Medula Óssea , Diferenciação Celular , Separação Celular , Técnicas de Cocultura , Feminino , Glucose/química , Proteínas de Fluorescência Verde/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Fenótipo , Fito-Hemaglutininas/química , Polietilenoglicóis/química , Ratos , Fatores de Transcrição
16.
Diabetologia ; 59(9): 1843-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27053234

RESUMO

The loss of insulin-producing beta cells by apoptosis is a hallmark of all forms of diabetes mellitus. Strategies to prevent beta cell apoptosis and dysfunction are urgently needed to restore the insulin-producing cells and to prevent severe diabetes progression. We recently identified the serine/threonine kinase known as mammalian sterile 20-like kinase 1 (MST1) as a critical regulator of apoptotic beta cell death and dysfunction. MST1 activates several apoptotic signalling pathways, which further stimulate its own cleavage, leading to a vicious cycle of cell death. This led us to hypothesise that MST1 signalling is central to the initiation of beta cell death in diabetes. We found that MST1 is strongly activated in a diabetic beta cell and induces not only its death but also directly impairs insulin secretion through promoting proteasomal degradation of key beta cell transcription factor, pancreatic and duodenal homeobox 1 (PDX1), which is critical for insulin production.Pre-clinical studies in various animal models of diabetes have reported that MST1 deficiency remarkably restores normoglycaemia and beta cell function and prevents the development of diabetes. Importantly, MST1 deficiency can revert fully diabetic beta cells to a non-diabetic state. MST1 may serve as a target for the development of novel therapies for diabetes that trigger the cause of the disease, namely, the destruction of the beta cells. The major current focus of our investigation is to identify and test the efficacy of potent inhibitors of this death signalling pathway to protect beta cells against the effects of autoimmune attack in type 1 diabetes and to preserve beta cell mass and function in type 2 diabetes. This review summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9 , and by Harry Heimberg and colleagues, DOI: 10.1007/s00125-016-3879-6 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ).


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fator de Crescimento de Hepatócito/genética , Humanos , Insulina/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
Cell Signal ; 28(4): 272-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26776303

RESUMO

The dual leucine zipper kinase DLK induces ß-cell apoptosis by inhibiting the transcriptional activity conferred by the ß-cell protective transcription factor cAMP response element binding protein CREB. This action might contribute to ß-cell loss and ultimately diabetes. Within its kinase domain DLK shares high homology with the mixed lineage kinase (MLK) 3, which is activated by tumor necrosis factor (TNF) α and interleukin (IL)-1ß, known prediabetic signals. In the present study, the regulation of DLK in ß-cells by these cytokines was investigated. Both, TNFα and IL-1ß induced the nuclear translocation of DLK. Mutations within a putative nuclear localization signal (NLS) prevented basal and cytokine-induced nuclear localization of DLK and binding to the importin receptor importin α, thereby demonstrating a functional NLS within DLK. DLK NLS mutants were catalytically active as they phosphorylated their down-stream kinase c-Jun N-terminal kinase to the same extent as DLK wild-type but did neither inhibit CREB-dependent gene transcription nor transcription conferred by the promoter of the anti-apoptotic protein BCL-xL. In addition, the ß-cell apoptosis-inducing effect of DLK was severely diminished by mutation of its NLS. In a murine model of prediabetes, enhanced nuclear DLK was found. These data demonstrate that DLK exerts distinct functions, depending on its subcellular localization and thus provide a novel level of regulating DLK action. Furthermore, the prevention of the nuclear localization of DLK as induced by prediabetic signals with consecutive suppression of ß-cell apoptosis might constitute a novel target in the therapy of diabetes mellitus.


Assuntos
Apoptose , Núcleo Celular/enzimologia , Diabetes Mellitus Experimental/enzimologia , Células Secretoras de Insulina/enzimologia , MAP Quinase Quinase Quinases/metabolismo , Animais , Linhagem Celular , Núcleo Celular/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/genética , Células Secretoras de Insulina/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/genética , Camundongos , Mutação , Transporte Proteico/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
18.
Gigascience ; 4: 20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25941567

RESUMO

BACKGROUND: Three-dimensional (3D) imaging mass spectrometry (MS) is an analytical chemistry technique for the 3D molecular analysis of a tissue specimen, entire organ, or microbial colonies on an agar plate. 3D-imaging MS has unique advantages over existing 3D imaging techniques, offers novel perspectives for understanding the spatial organization of biological processes, and has growing potential to be introduced into routine use in both biology and medicine. Owing to the sheer quantity of data generated, the visualization, analysis, and interpretation of 3D imaging MS data remain a significant challenge. Bioinformatics research in this field is hampered by the lack of publicly available benchmark datasets needed to evaluate and compare algorithms. FINDINGS: High-quality 3D imaging MS datasets from different biological systems at several labs were acquired, supplied with overview images and scripts demonstrating how to read them, and deposited into MetaboLights, an open repository for metabolomics data. 3D imaging MS data were collected from five samples using two types of 3D imaging MS. 3D matrix-assisted laser desorption/ionization imaging (MALDI) MS data were collected from murine pancreas, murine kidney, human oral squamous cell carcinoma, and interacting microbial colonies cultured in Petri dishes. 3D desorption electrospray ionization (DESI) imaging MS data were collected from a human colorectal adenocarcinoma. CONCLUSIONS: With the aim to stimulate computational research in the field of computational 3D imaging MS, selected high-quality 3D imaging MS datasets are provided that could be used by algorithm developers as benchmark datasets.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Benchmarking , Bases de Dados Factuais , Humanos , Imageamento Tridimensional , Metabolômica , Camundongos , Reprodutibilidade dos Testes
19.
Diabetologia ; 57(8): 1645-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24816367

RESUMO

AIMS/HYPOTHESIS: Inflammation contributes to pancreatic beta cell dysfunction in type 2 diabetes. Toll-like receptor (TLR)-2 and -4 ligands are increased systemically in recently diagnosed type 2 diabetes patients, and TLR2- and TLR4-deficient mice are protected from the metabolic consequences of a high-fat diet. Here we investigated the role of macrophages in TLR2/6- and TLR4-mediated effects on islet inflammation and beta cell function. METHODS: Genetic and pharmacological approaches were used to determine the effects of TLR2/6 and TLR4 ligands on mouse islets, human islets and purified rat beta cells. Islet macrophages were depleted and sorted by flow cytometry and the effects of TLR2/6- and TLR4-activated bone-marrow-derived macrophages (BMDMs) on beta cell function were assessed. RESULTS: Macrophages contributed to TLR2/6- and TLR4-induced islet Il1a/IL1A and Il1b/IL1B mRNA expression in mouse and human islets and IL-1ß secretion from human islets. TLR2/6 and TLR4 ligands also reduced insulin gene expression; however, this occurred in a non-beta cell autonomous manner. TLR2/6- and TLR4-activated BMDMs reduced beta cell insulin secretion partly via reducing Ins1, Ins2, and Pdx1 mRNA expression. Antagonism of the IL-1 receptor and neutralisation of IL-6 completely reversed the effects of activated macrophages on beta cell gene expression. CONCLUSIONS/INTERPRETATION: We conclude that islet macrophages are major contributors to islet IL-1ß secretion in response to TLR2/6 and TLR4 ligands. BMDMs stimulated with TLR2/6 and TLR4 ligands reduce insulin secretion from pancreatic beta cells, partly via IL-1ß- and IL-6-mediated decreased insulin gene expression.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/genética , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Ilhotas Pancreáticas/metabolismo , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Insulina/metabolismo , Camundongos Knockout , Ratos , Receptores Toll-Like/genética
20.
Nat Med ; 20(4): 385-397, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24633305

RESUMO

Apoptotic cell death is a hallmark of the loss of insulin-producing beta cells in all forms of diabetes mellitus. Current treatments fail to halt the decline in functional beta cell mass, and strategies to prevent beta cell apoptosis and dysfunction are urgently needed. Here, we identified mammalian sterile 20-like kinase-1 (MST1) as a critical regulator of apoptotic beta cell death and function. Under diabetogenic conditions, MST1 was strongly activated in beta cells in human and mouse islets and specifically induced the mitochondrial-dependent pathway of apoptosis through upregulation of the BCL-2 homology-3 (BH3)-only protein BIM. MST1 directly phosphorylated the beta cell transcription factor PDX1 at T11, resulting in the latter's ubiquitination and degradation and thus in impaired insulin secretion. MST1 deficiency completely restored normoglycemia, beta cell function and survival in vitro and in vivo. We show MST1 as a proapoptotic kinase and key mediator of apoptotic signaling and beta cell dysfunction and suggest that it may serve as target for the development of new therapies for diabetes.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteína 11 Semelhante a Bcl-2 , Proteínas de Homeodomínio/metabolismo , Humanos , Secreção de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Ilhotas Pancreáticas/metabolismo , Camundongos , Fosforilação , Transdução de Sinais , Transativadores/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA