Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cardiovasc Res ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838211

RESUMO

AIMS: Although the cannabinoid CB1 receptor has been implicated in atherosclerosis, its cell-specific effects in this disease are not well understood. To address this, we generated a transgenic mouse model to study the role of myeloid CB1 signaling in atherosclerosis. METHODS AND RESULTS: Here, we report that male mice with myeloid-specific Cnr1 deficiency on atherogenic background developed smaller lesions and necrotic cores than controls, while only minor genotype differences were observed in females. Male Cnr1 deficient mice showed reduced arterial monocyte recruitment and macrophage proliferation with less inflammatory phenotype. The sex-specific differences in proliferation were dependent on estrogen receptor (ER)α-estradiol signaling. Kinase activity profiling identified a CB1-dependent regulation of p53 and cyclin-dependent kinases. Transcriptomic profiling further revealed chromatin modifications, mRNA processing and mitochondrial respiration among the key processes affected by CB1 signaling, which was supported by metabolic flux assays. Chronic administration of the peripherally-restricted CB1 antagonist JD5037 inhibited plaque progression and macrophage proliferation, but only in male mice. Finally, CNR1 expression was detectable in human carotid endarterectomy plaques and inversely correlated with proliferation, oxidative metabolism and inflammatory markers, suggesting a possible implication of CB1-dependent regulation in human pathophysiology. CONCLUSION: Impaired macrophage CB1 signaling is atheroprotective by limiting their arterial recruitment, proliferation and inflammatory reprogramming in male mice. The importance of macrophage CB1 signaling appears to be sex-dependent.

2.
Circulation ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686559

RESUMO

BACKGROUND: Atherosclerosis, a leading cause of cardiovascular disease, involves the pathological activation of various cell types, including immunocytes (eg, macrophages and T cells), smooth muscle cells (SMCs), and endothelial cells. Accumulating evidence suggests that transition of SMCs to other cell types, known as phenotypic switching, plays a central role in atherosclerosis development and complications. However, the characteristics of SMC-derived cells and the underlying mechanisms of SMC transition in disease pathogenesis remain poorly understood. Our objective is to characterize tumor cell-like behaviors of SMC-derived cells in atherosclerosis, with the ultimate goal of developing interventions targeting SMC transition for the prevention and treatment of atherosclerosis. METHODS: We used SMC lineage tracing mice and human tissues and applied a range of methods, including molecular, cellular, histological, computational, human genetics, and pharmacological approaches, to investigate the features of SMC-derived cells in atherosclerosis. RESULTS: SMC-derived cells in mouse and human atherosclerosis exhibit multiple tumor cell-like characteristics, including genomic instability, evasion of senescence, hyperproliferation, resistance to cell death, invasiveness, and activation of comprehensive cancer-associated gene regulatory networks. Specific expression of the oncogenic mutant KrasG12D in SMCs accelerates phenotypic switching and exacerbates atherosclerosis. Furthermore, we provide proof of concept that niraparib, an anticancer drug targeting DNA damage repair, attenuates atherosclerosis progression and induces regression of lesions in advanced disease in mouse models. CONCLUSIONS: Our findings demonstrate that atherosclerosis is an SMC-driven tumor-like disease, advancing our understanding of its pathogenesis and opening prospects for innovative precision molecular strategies aimed at preventing and treating atherosclerotic cardiovascular disease.

3.
Circulation ; 148(1): 47-67, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37199168

RESUMO

BACKGROUND: Activation of vascular smooth muscle cell (VSMC) inflammation is vital to initiate vascular disease. The role of human-specific long noncoding RNAs in VSMC inflammation is poorly understood. METHODS: Bulk RNA sequencing in differentiated human VSMCs revealed a novel human-specific long noncoding RNA called inflammatory MKL1 (megakaryoblastic leukemia 1) interacting long noncoding RNA (INKILN). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation as well as human atherosclerosis and abdominal aortic aneurysm. The transcriptional regulation of INKILN was verified through luciferase reporter and chromatin immunoprecipitation assays. Loss-of-function and gain-of-function studies and multiple RNA-protein and protein-protein interaction assays were used to uncover a mechanistic role of INKILN in the VSMC proinflammatory gene program. Bacterial artificial chromosome transgenic mice were used to study INKILN expression and function in ligation injury-induced neointimal formation. RESULTS: INKILN expression is downregulated in contractile VSMCs and induced in human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB (nuclear factor kappa B) site within its proximal promoter. INKILN activates proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks interleukin-1ß-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1 and the luciferase activity of an NF-κB reporter. Furthermore, INKILN knockdown enhances MKL1 ubiquitination through reduced physical interaction with the deubiquitinating enzyme USP10 (ubiquitin-specific peptidase 10). INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in bacterial artificial chromosome transgenic mice. CONCLUSIONS: These findings elucidate an important pathway of VSMC inflammation involving an INKILN/MKL1/USP10 regulatory axis. Human bacterial artificial chromosome transgenic mice offer a novel and physiologically relevant approach for investigating human-specific long noncoding RNAs under vascular disease conditions.


Assuntos
Aneurisma da Aorta Abdominal , RNA Longo não Codificante , Animais , Humanos , Camundongos , Aneurisma da Aorta Abdominal/metabolismo , Proliferação de Células , Células Cultivadas , Inflamação/genética , Inflamação/metabolismo , Luciferases/metabolismo , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina Tiolesterase/metabolismo
4.
Mol Ther ; 31(6): 1775-1790, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37147804

RESUMO

Long non-coding RNAs (lncRNAs) orchestrate various biological processes and regulate the development of cardiovascular diseases. Their potential therapeutic benefit to tackle disease progression has recently been extensively explored. Our study investigates the role of lncRNA Nudix Hydrolase 6 (NUDT6) and its antisense target fibroblast growth factor 2 (FGF2) in two vascular pathologies: abdominal aortic aneurysms (AAA) and carotid artery disease. Using tissue samples from both diseases, we detected a substantial increase of NUDT6, whereas FGF2 was downregulated. Targeting Nudt6 in vivo with antisense oligonucleotides in three murine and one porcine animal model of carotid artery disease and AAA limited disease progression. Restoration of FGF2 upon Nudt6 knockdown improved vessel wall morphology and fibrous cap stability. Overexpression of NUDT6 in vitro impaired smooth muscle cell (SMC) migration, while limiting their proliferation and augmenting apoptosis. By employing RNA pulldown followed by mass spectrometry as well as RNA immunoprecipitation, we identified Cysteine and Glycine Rich Protein 1 (CSRP1) as another direct NUDT6 interaction partner, regulating cell motility and SMC differentiation. Overall, the present study identifies NUDT6 as a well-conserved antisense transcript of FGF2. NUDT6 silencing triggers SMC survival and migration and could serve as a novel RNA-based therapeutic strategy in vascular diseases.


Assuntos
Aneurisma da Aorta Abdominal , Doenças das Artérias Carótidas , RNA Longo não Codificante , Animais , Camundongos , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/terapia , Aneurisma da Aorta Abdominal/metabolismo , Apoptose/genética , Proliferação de Células/genética , Progressão da Doença , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Oligonucleotídeos Antissenso
5.
Atherosclerosis ; 371: 1-13, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940535

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is a systemic and chronic inflammatory disease propagated by monocytes and macrophages. Yet, our knowledge on how transcriptome of these cells evolves in time and space is limited. We aimed at characterizing gene expression changes in site-specific macrophages and in circulating monocytes during the course of atherosclerosis. METHODS: We utilized apolipoprotein E-deficient mice undergoing one- and six-month high cholesterol diet to model early and advanced atherosclerosis. Aortic macrophages, peritoneal macrophages, and circulating monocytes from each mouse were subjected to bulk RNA-sequencing (RNA-seq). We constructed a comparative directory that profiles lesion- and disease stage-specific transcriptomic regulation of the three cell types in atherosclerosis. Lastly, the regulation of one gene, Gpnmb, whose expression positively correlated with atheroma growth, was validated using single-cell RNA-seq (scRNA-seq) of atheroma plaque from murine and human. RESULTS: The convergence of gene regulation between the three investigated cell types was surprisingly low. Overall 3245 differentially expressed genes were involved in the biological modulation of aortic macrophages, among which less than 1% were commonly regulated by the remote monocytes/macrophages. Aortic macrophages regulated gene expression most actively during atheroma initiation. Through complementary interrogation of murine and human scRNA-seq datasets, we showcased the practicality of our directory, using the selected gene, Gpnmb, whose expression in aortic macrophages, and a subset of foamy macrophages in particular, strongly correlated with disease advancement during atherosclerosis initiation and progression. CONCLUSIONS: Our study provides a unique toolset to explore gene regulation of macrophage-related biological processes in and outside the atheromatous plaque at early and advanced disease stages.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Apolipoproteínas E , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Placa Aterosclerótica/metabolismo , Transcriptoma
6.
Vascul Pharmacol ; 150: 107167, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958707

RESUMO

BACKGROUND: Calcification, a key feature of advanced human atherosclerosis, is positively associated with vascular disease burden and adverse events. We showed that macrocalcification can be a stabilizing factor for carotid plaque molecular biology, due to inverse association with immune processes. Mast cells (MCs) are important contributors to plaque instability, but their relationship with macrocalcification is unexplored. With a hypothesis that MC activation negatively associates with carotid plaque macrocalcification, we aimed to investigate the link between MCs and carotid plaque vulnerability, and study MC role in plaque calcification via smooth muscle cells (SMCs). METHODS: Pre-operative computed tomography angiographies of patients (n = 40) undergoing surgery for carotid stenosis were used to characterize plaque morphology. Plaque microarrays (n = 40 and n = 126) were used for bioinformatic deconvolution of immune cell populations. Tissue microarrays (n = 103) were used to histologically validate the contribution of activated and resting MCs in plaques. RESULTS: Activated MCs and their typical markers were negatively correlated with macrocalcification. The ratio of activated vs. resting MCs was increased in low-calcified plaques from symptomatic patients. There was no modulating effect of medication on MC ratios. In vitro experiments showed that SMC calcification attenuated MC activation, while both active and resting MCs stimulated SMC calcification and induced dedifferentiation towards a pro-inflammatory-, osteochondrocyte-like phenotype, without modulating their migro-proliferative function. CONCLUSIONS: Integrative analyses from human plaques showed that MC activation is inversely associated with macrocalcification and positively with parameters of plaque vulnerability. Mechanistically, MCs induce SMC osteogenic reprograming, while matrix calcification in turn attenuates MC activation, offering new therapeutic avenues for exploration.


Assuntos
Aterosclerose , Estenose das Carótidas , Placa Aterosclerótica , Calcificação Vascular , Humanos , Placa Aterosclerótica/patologia , Mastócitos/patologia , Estenose das Carótidas/complicações , Aterosclerose/patologia , Miócitos de Músculo Liso/patologia , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/genética
7.
Thromb Haemost ; 123(5): 545-554, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36596447

RESUMO

BACKGROUND AND AIM: The ability to recognize and monitor atherosclerotic lesion development using noninvasive imaging is crucial in preventive cardiology. The aim of the present study was to establish a protocol for longitudinal monitoring of plaque lipid, collagen, and macrophage burden as well as of endothelial permeability. METHODS AND RESULTS: Photoacoustic signals derived from endogenous or exogenous dyes assessed in vivo, in plaques of albino Apoe -/- mice, correlated with lesion characteristics obtained after histomorphometric and immunofluorescence analyses, thus supporting the validity of our protocol. Using models of atheroprogression and regression, we could apply our imaging protocol to the longitudinal observation of atherosclerotic lesion characteristics in mice. CONCLUSIONS: The present study shows an innovative approach to assess arterial inflammation in a non-invasive fashion, applicable to longitudinal analyses of changes of atherosclerotic lesion composition. Such approach could prove important in the preclinical testing of therapeutic interventions in mice carrying pre-established lesions.


Assuntos
Aterosclerose , Técnicas Fotoacústicas , Placa Aterosclerótica , Camundongos , Animais , Aterosclerose/patologia , Placa Aterosclerótica/patologia , Macrófagos/patologia , Diagnóstico por Imagem , Camundongos Knockout , Apolipoproteínas E/genética
8.
Arterioscler Thromb Vasc Biol ; 43(2): 286-299, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36546321

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as novel regulators of macrophage biology and inflammatory cardiovascular diseases. However, studies focused on lncRNAs in human macrophage subtypes, particularly human lncRNAs that are not conserved in rodents, are limited. METHODS: Through RNA-sequencing of human monocyte-derived macrophages, we identified suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR). Lipopolysaccharide/IFNγ (interferon γ) stimulated human macrophages were treated with SIMALR antisense oligonucleotides and subjected to RNA-sequencing to investigate the function of SIMALR. Western blots, luciferase assay, and RNA immunoprecipitation were performed to validate function and potential mechanism of SIMALR. RNAscope was performed to identify SIMALR expression in human carotid atherosclerotic plaques. RESULTS: RNA-sequencing of human monocyte-derived macrophages identified SIMALR, a human macrophage-specific long intergenic noncoding RNA that is highly induced in lipopolysaccharide/IFNγ-stimulated macrophages. SIMALR knockdown in lipopolysaccharide/IFNγ stimulated THP1 human macrophages induced apoptosis of inflammatory macrophages, as shown by increased protein expression of cleaved PARP (poly[ADP-ribose] polymerase), caspase 9, caspase 3, and Annexin V+. RNA-sequencing of control versus SIMALR knockdown in lipopolysaccharide/IFNγ-stimulated macrophages showed Netrin-1 (NTN1) to be significantly decreased upon SIMALR knockdown. We confirmed that NTN1 knockdown in lipopolysaccharide/IFNγ-stimulated macrophages induced apoptosis. The SIMALR knockdown-induced apoptotic phenotype was rescued by adding recombinant NTN1. NTN1 promoter-luciferase reporter activity was increased in HEK293T (human embryonic kidney 293) cells treated with lentiviral overexpression of SIMALR. NTN1 promoter activity is known to require HIF1α (hypoxia-inducible factor 1 subunit alpha), and our studies suggest that SIMALR may interact with HIF1α to regulate NTN1 transcription, thereby regulating macrophages apoptosis. SIMALR was found to be expressed in macrophages in human carotid atherosclerotic plaques of symptomatic patients. CONCLUSIONS: SIMALR is a nonconserved, human macrophage lncRNA expressed in atherosclerosis that suppresses macrophage apoptosis. SIMALR partners with HIF1α (hypoxia-inducible factor 1 subunit alpha) to regulate NTN1, which is a known macrophage survival factor. This work illustrates the importance of interrogating the functions of human lncRNAs and exploring their translational and therapeutic potential in human atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Placa Aterosclerótica/metabolismo , Lipopolissacarídeos , Netrina-1 , Células HEK293 , Macrófagos/metabolismo , Aterosclerose/metabolismo , Apoptose , Fator 1 Induzível por Hipóxia
9.
Vasa ; 52(2): 124-132, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36519232

RESUMO

Background: Abdominal aortic aneurysm (AAA) rupture is still associated with a mortality rate of 80-90%. Imaging techniques or molecular fingerprinting for patient-specific risk stratification to identify pending rupture are still lacking. The chemokine (C-X-C motif) receptor (CXCR4) activation by CXCL12 ligand has been identified as a marker of inflammation and atherosclerosis, associated with AAA. Both are highly expressed in the aortic aneurysm wall. However, it is still unclear whether different expression levels of CXCR4 and CXCL12 can distinguish ruptured AAAs (rAAA) from intact AAAs (iAAA). Patients and methods: Abdominal aortic tissue samples (rAAA: n=29; iAAA: n=54) were excised during open aortic repair. Corresponding serum samples from these patients (n=9 from rAAAs; n=47 from iAAA) were drawn pre-surgery. Healthy aortic tissue samples (n=8) obtained from adult kidney donors during transplantation and serum samples from healthy adult volunteers were used as controls (n=5 each). Results: CXCR4 was mainly expressed in the media of the aneurysmatic tissue. Focal positive staining was also observed in areas of inflammatory infiltrates within the adventitia. In tissue lysates, no significant differences between iAAA, rAAA, and healthy controls were observed upon ELISA analysis. In serum samples, the level of CXCR4 was significantly increased in rAAA by 4-fold compared to healthy controls (p=0.011) and 3.0-fold for rAAA compared to iAAA (p<0.001). Furthermore a significant positive correlation between aortic diameter and serum CXCR4 concentration was found for both, iAAA and rAAA (p=0.042). Univariate logistic regression analysis showed that increased CXCR4 serum concentrations were associated with AAA rupture (OR: 4.28, 95% CI: 1.95-12.1, p=0.001). Conclusions: CXCR4 concentration was significantly increased in serum of rAAA patients and showed a significant correlation with an increased aortic diameter. The level of CXCR4 in serum was associated with a more than 4-fold risk increase for rAAA and thus could possibly serve as a biomarker in the future. However, further validation in larger studies is required.


Assuntos
Aneurisma da Aorta Abdominal , Ruptura Aórtica , Adulto , Humanos , Aneurisma da Aorta Abdominal/cirurgia , Aorta , Ruptura Aórtica/cirurgia , Biomarcadores , Medição de Risco , Fatores de Risco , Resultado do Tratamento , Receptores CXCR4
10.
Cardiovasc Res ; 119(3): 867-878, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36413508

RESUMO

AIMS: Abdominal aortic aneurysm (AAA) is a common cardiovascular disease with a strong correlation to smoking, although underlying mechanisms have been minimally explored. Electronic cigarettes (e-cigs) have gained recent broad popularity and can deliver nicotine at comparable levels to tobacco cigarettes, but effects on AAA development are unknown. METHODS AND RESULTS: We evaluated the impact of daily e-cig vaping with nicotine on AAA using two complementary murine models and found that exposure enhanced aneurysm development in both models and genders. E-cigs induced changes in key mediators of AAA development including cytokine chitinase-3-like protein 1 (CHI3L1/Chil1) and its targeting microRNA-24 (miR-24). We show that nicotine triggers inflammatory signalling and reactive oxygen species while modulating miR-24 and CHI3L1/Chil1 in vitro and that Chil1 is crucial to e-cig-augmented aneurysm formation using a knockout model. CONCLUSIONS: In conclusion our work shows increased aneurysm formation along with augmented vascular inflammation in response to e-cig exposure with nicotine. Further, we identify Chil1 as a key mediator in this context. Our data raise concerns regarding the potentially harmful long-term effects of e-cig nicotine vaping.


Assuntos
Aneurisma da Aorta Abdominal , Sistemas Eletrônicos de Liberação de Nicotina , MicroRNAs , Animais , Masculino , Feminino , Camundongos , Nicotina/toxicidade , Fumar , MicroRNAs/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética
11.
Sci Rep ; 12(1): 20990, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470918

RESUMO

Abdominal aortic aneurysms (AAA) is a multifactorial complex disease with life-threatening consequences. While Genome-wide association studies (GWAS) have revealed several single nucleotide polymorphisms (SNPs) located in the genome of individuals with AAA, the link between SNPs with the associated pathological signals, the influence of risk factors on their distribution and their combined analysis is not fully understood. We integrated 86 AAA SNPs from GWAS and clinical cohorts from the literature to determine their phenotypical vulnerabilities and association with AAA risk factors. The SNPs were annotated using snpXplorer AnnotateMe tool to identify their chromosomal position, minor allele frequency, CADD (Combined Annotation Dependent Depletion), annotation-based pathogenicity score, variant consequence, and their associated gene. Gene enrichment analysis was performed using Gene Ontology and clustered using REVIGO. The plug-in GeneMANIA in Cytoscape was applied to identify network integration with associated genes and functions. 15 SNPs affecting 20 genes with a CADD score above ten were identified. AAA SNPs were predominantly located on chromosome 3 and 9. Stop-gained rs5516 SNP obtained high frequency in AAA and associated with proinflammatory and vascular remodeling phenotypes. SNPs presence positively correlated with hypertension, dyslipidemia and smoking history. GO showed that AAA SNPs and their associated genes could regulate lipid metabolism, extracellular matrix organization, smooth muscle cell proliferation, and oxidative stress, suggesting that part of these AAA traits could stem from genetic abnormalities. We show a library of inborn SNPs and associated genes that manifest in AAA. We uncover their pathological signaling trajectories that likely fuel AAA development.


Assuntos
Aneurisma da Aorta Abdominal , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Humanos , Aneurisma da Aorta Abdominal/genética , Frequência do Gene , Estudo de Associação Genômica Ampla
12.
Cell Rep ; 41(7): 111670, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384122

RESUMO

In healthy vessels, endothelial cells maintain a stable, differentiated, and growth-arrested phenotype for years. Upon injury, a rapid phenotypic switch facilitates proliferation to restore tissue perfusion. Here we report the identification of the endothelial cell-enriched long non-coding RNA (lncRNA) PCAT19, which contributes to the proliferative switch and acts as a safeguard for the endothelial genome. PCAT19 is enriched in confluent, quiescent endothelial cells and binds to the full replication protein A (RPA) complex in a DNA damage- and cell-cycle-related manner. Our results suggest that PCAT19 limits the phosphorylation of RPA2, primarily on the serine 33 (S33) residue, and thereby facilitates an appropriate DNA damage response while slowing cell cycle progression. Reduction in PCAT19 levels in response to either loss of cell contacts or knockdown promotes endothelial proliferation and angiogenesis. Collectively, PCAT19 acts as a dynamic guardian of the endothelial genome and facilitates rapid switching from quiescence to proliferation.


Assuntos
RNA Longo não Codificante , Fosforilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Endoteliais/metabolismo , DNA/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo
13.
PLoS One ; 17(9): e0265160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173935

RESUMO

The evolutionary conserved Taurine Upregulated Gene 1 (TUG1) is a ubiquitously expressed gene that is one of the highest expressed genes in human and rodent endothelial cells (ECs). We here show that TUG1 expression decreases significantly in aging mouse carotid artery ECs and human ECs in vitro, indicating a potential role in the aging endothelial vasculature system. We therefore investigated if, and how, TUG1 might function in aging ECs, but despite extensive phenotyping found no alterations in basal EC proliferation, apoptosis, barrier function, migration, mitochondrial function, or monocyte adhesion upon TUG1 silencing in vitro. TUG1 knockdown did slightly and significantly decrease cumulative sprout length upon vascular endothelial growth factor A stimulation in human umbilical vein endothelial cells (HUVECs), though TUG1-silenced HUVECs displayed no transcriptome-wide mRNA expression changes explaining this effect. Further, ectopic expression of the highly conserved and recently discovered 153 amino acid protein translated from certain TUG1 transcript isoforms did not alter angiogenic sprouting in vitro. Our data show that, despite a high expression and strong evolutionary conservation of both the TUG1 locus and the protein sequence it encodes, TUG1 does not seem to play a major role in basic endothelial cell function.


Assuntos
RNA Longo não Codificante/genética , Taurina , Fator A de Crescimento do Endotélio Vascular , Envelhecimento , Aminoácidos , Animais , Apoptose/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , RNA Mensageiro
14.
Metabolites ; 12(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144244

RESUMO

Coronary artery disease (CAD) is a complex, multifactorial disease caused, in particular, by inflammation and cholesterol metabolism. At the molecular level, the role of tissue-specific signaling pathways leading to CAD is still largely unexplored. This study relied on two main resources: (1) genes with impact on atherosclerosis/CAD, and (2) liver-specific transcriptome analyses from human and mouse studies. The transcription factor activating transcription factor 3 (ATF3) was identified as a key regulator of a liver network relevant to atherosclerosis and linked to inflammation and cholesterol metabolism. ATF3 was predicted to be a direct and indirect (via MAF BZIP Transcription Factor F (MAFF)) regulator of low-density lipoprotein receptor (LDLR). Chromatin immunoprecipitation DNA sequencing (ChIP-seq) data from human liver cells revealed an ATF3 binding motif in the promoter regions of MAFF and LDLR. siRNA knockdown of ATF3 in human Hep3B liver cells significantly upregulated LDLR expression (p < 0.01). Inflammation induced by lipopolysaccharide (LPS) stimulation resulted in significant upregulation of ATF3 (p < 0.01) and subsequent downregulation of LDLR (p < 0.001). Liver-specific expression data from human CAD patients undergoing coronary artery bypass grafting (CABG) surgery (STARNET) and mouse models (HMDP) confirmed the regulatory role of ATF3 in the homeostasis of cholesterol metabolism. This study suggests that ATF3 might be a promising treatment candidate for lowering LDL cholesterol and reducing cardiovascular risk.

15.
Eur J Vasc Endovasc Surg ; 64(2-3): 255-264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35853577

RESUMO

OBJECTIVE: The purpose of this study was to assess the associations between malignancy, therapeutic regimens, and aorto-iliac aneurysm (i.e., abdominal aortic aneurysm [AAA]) growth rates. METHODS: A retrospective single centre analysis identified patients with an AAA plus cancer. Patients who had two or more computed tomography angiograms over six months or more and additional malignancy were included. Clinical data and aneurysm diameters were analysed. AAA growth under cancer therapy (chemotherapy or radiation) was compared with a non-cancer AAA control cohort and to meta-analysis data. Statistics included t tests and a linear regression model with correction for initial aortic diameter and type of treatment. RESULTS: From 2003 to 2020, 217 patients (median age 70 years; 92% male) with 246 aneurysms (58.8% AAA) and 238 malignancies were identified. Prostate (26.7%) and lung (15.7%) cancer were most frequently seen. One hundred and fifty-seven patients (72.3%) received chemotherapy, 105 patients (48.4%) radiation, and 79 (36.4%) both. Annual AAA growth (mean ± standard deviation) was not statistically significantly different for cancer and non-cancer patients (2.0 ± 2.3 vs. 2.8 ± 2.1 mm/year; p = .20). However, subgroup analyses revealed that radiation was associated with a statistically significantly reduced mean aneurysm growth rate compared with cancer patients without radiation (1.1 ± 1.3 vs. 1.6 ± 2.1 mm/year; p = .046) and to the non-cancer control cohort (1.7 ± 1.9 vs. 2.8 ± 2.1 mm/year; p = .007). Administration of antimetabolites resulted in statistically significantly increased AAA growth (+ 0.9 mm/year; p = .011), while topoisomerase inhibitors (- 0.8 mm/year; p = .17) and anti-androgens (- 0.5 mm/year; p = .27) showed a possible trend for reduced growth. Similar observations were noted for iliac aneurysms (n = 85). Additionally, the effects persisted for chemotherapy combinations (2.6 ± 1.4 substances/patient). CONCLUSION: Patients with cancer and concomitant aortic aneurysms may require intensified monitoring when undergoing specific therapies, such as antimetabolite treatment, as they may experience an increased aneurysm growth rate. Radiation may be associated with reduced aneurysm growth.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Ilíaco , Neoplasias , Humanos , Masculino , Idoso , Feminino , Estudos Retrospectivos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/epidemiologia , Aneurisma da Aorta Abdominal/complicações , Aneurisma Ilíaco/complicações , Estudos de Coortes , Neoplasias/complicações
16.
Circ Res ; 131(1): 42-58, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35611698

RESUMO

BACKGROUND: A significant burden of atherosclerotic disease is driven by inflammation. Recently, microRNAs (miRNAs) have emerged as important factors driving and protecting from atherosclerosis. miR-223 regulates cholesterol metabolism and inflammation via targeting both cholesterol biosynthesis pathway and NFkB signaling pathways; however, its role in atherosclerosis has not been investigated. We hypothesize that miR-223 globally regulates core inflammatory pathways in macrophages in response to inflammatory and atherogenic stimuli thus limiting the progression of atherosclerosis. METHODS AND RESULTS: Loss of miR-223 in macrophages decreases Abca1 gene and protein expression as well as cholesterol efflux to apoA1 (Apolipoprotein A1) and enhances proinflammatory gene expression. In contrast, overexpression of miR-223 promotes the efflux of cholesterol and macrophage polarization toward an anti-inflammatory phenotype. These beneficial effects of miR-223 are dependent on its target gene, the transcription factor Sp3. Consistent with the antiatherogenic effects of miR-223 in vitro, mice receiving miR223-/- bone marrow exhibit increased plaque size, lipid content, and circulating inflammatory cytokines (ie, IL-1ß). Deficiency of miR-223 in bone marrow-derived cells also results in an increase in circulating pro-atherogenic cells (total monocytes and neutrophils) compared with control mice. Furthermore, the expression of miR-223 target gene (Sp3) and pro-inflammatory marker (Il-6) are enhanced whereas the expression of Abca1 and anti-inflammatory marker (Retnla) are reduced in aortic arches from mice lacking miR-223 in bone marrow-derived cells. In mice fed a high-cholesterol diet and in humans with unstable carotid atherosclerosis, the expression of miR-223 is increased. To further understand the molecular mechanisms underlying the effect of miR-223 on atherosclerosis in vivo, we characterized global RNA translation profile of macrophages isolated from mice receiving wild-type or miR223-/- bone marrow. Using ribosome profiling, we reveal a notable upregulation of inflammatory signaling and lipid metabolism at the translation level but less significant at the transcription level. Analysis of upregulated genes at the translation level reveal an enrichment of miR-223-binding sites, confirming that miR-223 exerts significant changes in target genes in atherogenic macrophages via altering their translation. CONCLUSIONS: Our study demonstrates that miR-223 can protect against atherosclerosis by acting as a global regulator of RNA translation of cholesterol efflux and inflammation pathways.


Assuntos
Aterosclerose , Macrófagos , MicroRNAs , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo
17.
Eur Heart J ; 43(19): 1864-1877, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35567557

RESUMO

AIMS: Inflammation is a key factor in atherosclerosis. The transcription factor interferon regulatory factor-5 (IRF5) drives macrophages towards a pro-inflammatory state. We investigated the role of IRF5 in human atherosclerosis and plaque stability. METHODS AND RESULTS: Bulk RNA sequencing from the Carotid Plaque Imaging Project biobank were used to mine associations between major macrophage associated genes and transcription factors and human symptomatic carotid disease. Immunohistochemistry, proximity extension assays, and Helios cytometry by time of flight (CyTOF) were used for validation. The effect of IRF5 deficiency on carotid plaque phenotype and rupture in ApoE-/- mice was studied in an inducible model of plaque rupture. Interferon regulatory factor-5 and ITGAX/CD11c were identified as the macrophage associated genes with the strongest associations with symptomatic carotid disease. Expression of IRF5 and ITGAX/CD11c correlated with the vulnerability index, pro-inflammatory plaque cytokine levels, necrotic core area, and with each other. Macrophages were the predominant CD11c-expressing immune cells in the plaque by CyTOF and immunohistochemistry. Interferon regulatory factor-5 immunopositive areas were predominantly found within CD11c+ areas with a predilection for the shoulder region, the area of the human plaque most prone to rupture. Accordingly, an inducible plaque rupture model of ApoE-/-Irf5-/- mice had significantly lower frequencies of carotid plaque ruptures, smaller necrotic cores, and less CD11c+ macrophages than their IRF5-competent counterparts. CONCLUSION: Using complementary evidence from data from human carotid endarterectomies and a murine model of inducible rupture of carotid artery plaque in IRF5-deficient mice, we demonstrate a mechanistic link between the pro-inflammatory transcription factor IRF5, macrophage phenotype, plaque inflammation, and its vulnerability to rupture.


Assuntos
Aterosclerose , Fatores Reguladores de Interferon , Macrófagos , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Inflamação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Macrófagos/imunologia , Camundongos , Necrose , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
18.
JVS Vasc Sci ; 2: 219-234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778850

RESUMO

INTRODUCTION: Abdominal aortic aneurysm (AAA) is a condition that has considerable socioeconomic impact and an eventual rupture is associated with high mortality and morbidity. Despite decades of research, surgical repair remains the treatment of choice and no medical therapy is currently available. Animal models and, in particular, murine models, of AAA are a vital tool for experimental in vivo research. However, each of the different models has individual limitations and provide only partial mimicry of human disease. This narrative review addresses the translational potential of the available mouse models, highlighting unanswered questions from a clinical perspective. It is based on a thorough presentation of the available literature and more than a decade of personal experience, with most of the available models in experimental and translational AAA research. RESULTS: From all the models published, only the four inducible models, namely the angiotensin II model (AngII), the porcine pancreatic elastase perfusion model (PPE), the external periadventitial elastase application (ePPE), and the CaCl2 model have been widely used by different independent research groups. Although the angiotensin II model provides features of dissection and aneurysm formation, the PPE model shows reliable features of human AAA, especially beyond day 7 after induction, but remains technically challenging. The translational value of ePPE as a model and the combination with ß-aminopropionitrile to induce rupture and intraluminal thrombus formation is promising, but warrants further mechanistic insights. Finally, the external CaCl2 application is known to produce inflammatory vascular wall thickening. Unmet translational research questions include the origin of AAA development, monitoring aneurysm growth, gender issues, and novel surgical therapies as well as novel nonsurgical therapies. CONCLUSION: New imaging techniques, experimental therapeutic alternatives, and endovascular treatment options provide a plethora of research topics to strengthen the individual features of currently available mouse models, creating the possibility of shedding new light on translational research questions.

19.
Eur J Vasc Endovasc Surg ; 62(5): 716-726, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34511314

RESUMO

OBJECTIVE: Ischaemic strokes can be caused by unstable carotid atherosclerosis, but methods for identification of high risk lesions are lacking. Carotid plaque morphology imaging using software for visualisation of plaque components in computed tomography angiography (CTA) may improve assessment of plaque phenotype and stroke risk, but it is unknown if such analyses also reflect the biological processes related to lesion stability. Here, we investigated how carotid plaque morphology by image analysis of CTA is associated with biological processes assessed by transcriptomic analyses of corresponding carotid endarterectomies (CEAs). METHODS: Carotid plaque morphology was assessed in patients undergoing CEA for symptomatic or asymptomatic carotid stenosis consecutively enrolled between 2006 and 2015. Computer based analyses of pre-operative CTA was performed to define calcification, lipid rich necrotic core (LRNC), intraplaque haemorrhage (IPH), matrix (MATX), and plaque burden. Plaque morphology was correlated with molecular profiles obtained from microarrays of corresponding CEAs and models were built to assess the ability of plaque morphology to predict symptomatology. RESULTS: Carotid plaques (n = 93) from symptomatic patients (n = 61) had significantly higher plaque burden and LRNC compared with plaques from asymptomatic patients (n = 32). Lesions selected from the transcriptomic cohort (n = 40) with high LRNC, IPH, MATX, or plaque burden were characterised by molecular signatures coupled with inflammation and extracellular matrix degradation, typically linked with instability. In contrast, highly calcified plaques had a molecular signature signifying stability with enrichment of profibrotic pathways and repressed inflammation. In a cross validated prediction model for symptoms, plaque morphology by CTA alone was superior to the degree of stenosis. CONCLUSION: The study demonstrates that CTA image analysis for evaluation of carotid plaque morphology, also reflects prevalent biological processes relevant for assessment of plaque phenotype. The results support the use of CTA image analysis of plaque morphology for risk stratification and management of patients with carotid stenosis.


Assuntos
Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/metabolismo , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Idoso , Estenose das Carótidas/etiologia , Estudos de Coortes , Angiografia por Tomografia Computadorizada , Endarterectomia das Carótidas , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Placa Aterosclerótica/etiologia , Sensibilidade e Especificidade
20.
Cells ; 10(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063989

RESUMO

Calcification is a prominent feature of late-stage atherosclerosis, but the mechanisms driving this process are unclear. Using a biobank of carotid endarterectomies, we recently showed that Proteoglycan 4 (PRG4) is a key molecular signature of calcified plaques, expressed in smooth muscle cell (SMC) rich regions. Here, we aimed to unravel the PRG4 role in vascular remodeling and intimal calcification. PRG4 expression in human carotid endarterectomies correlated with calcification assessed by preoperative computed tomographies. PRG4 localized to SMCs in early intimal thickening, while in advanced lesions it was found in the extracellular matrix, surrounding macro-calcifications. In experimental models, Prg4 was upregulated in SMCs from partially ligated ApoE-/- mice and rat carotid intimal hyperplasia, correlating with osteogenic markers and TGFb1. Furthermore, PRG4 was enriched in cells positive for chondrogenic marker SOX9 and around plaque calcifications in ApoE-/- mice on warfarin. In vitro, PRG4 was induced in SMCs by IFNg, TGFb1 and calcifying medium, while SMC markers were repressed under calcifying conditions. Silencing experiments showed that PRG4 expression was driven by transcription factors SMAD3 and SOX9. Functionally, the addition of recombinant human PRG4 increased ectopic SMC calcification, while arresting cell migration and proliferation. Mechanistically, it suppressed endogenous PRG4, SMAD3 and SOX9, and restored SMC markers' expression. PRG4 modulates SMC function and osteogenic phenotype during intimal remodeling and macro-calcification in response to TGFb1 signaling, SMAD3 and SOX9 activation. The effects of PRG4 on SMC phenotype and calcification suggest its role in atherosclerotic plaque stability, warranting further investigations.


Assuntos
Calcinose , Miócitos de Músculo Liso , Proteoglicanas/metabolismo , Remodelação Vascular , Animais , Diferenciação Celular , Estudos de Coortes , Humanos , Masculino , Camundongos , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos , Fatores de Transcrição SOX9/metabolismo , Proteína Smad3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA