Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1577, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332152

RESUMO

Helicobacter pylori causes gastric inflammation, gland hyperplasia and is linked to gastric cancer. Here, we studied the interplay between gastric epithelial stem cells and their stromal niche under homeostasis and upon H. pylori infection. We find that gastric epithelial stem cell differentiation is orchestrated by subsets of stromal cells that either produce BMP inhibitors in the gland base, or BMP ligands at the surface. Exposure to BMP ligands promotes a feed-forward loop by inducing Bmp2 expression in the epithelial cells themselves, enforcing rapid lineage commitment to terminally differentiated mucous pit cells. H. pylori leads to a loss of stromal and epithelial Bmp2 expression and increases expression of BMP inhibitors, promoting self-renewal of stem cells and accumulation of gland base cells, which we mechanistically link to IFN-γ signaling. Mice that lack IFN-γ signaling show no alterations of BMP gradient upon infection, while exposure to IFN-γ resembles H. pylori-driven mucosal responses.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Inflamação/metabolismo , Ligantes , Camundongos
2.
Am J Respir Crit Care Med ; 204(7): 826-841, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34256007

RESUMO

Rationale: Suboptimal vaccine immunogenicity and antigenic mismatch, compounded by poor uptake, means that influenza remains a major global disease. T cells recognizing peptides derived from conserved viral proteins could enhance vaccine-induced cross-strain protection. Objectives: To investigate the kinetics, phenotypes, and function of influenza virus-specific CD8+ resident memory T (Trm) cells in the lower airway and infer the molecular pathways associated with their response to infection in vivo. Methods: Healthy volunteers, aged 18-55, were inoculated intranasally with influenza A/California/4/09(H1N1). Blood, upper airway, and (in a subgroup) lower airway samples were obtained throughout infection. Symptoms were assessed by using self-reported diaries, and the nasal viral load was assessed by using quantitative PCR. T-cell responses were analyzed by using a three-color FluoroSpot assay, flow cytometry with MHC I-peptide tetramers, and RNA sequencing, with candidate markers being confirmed by using the immunohistochemistry results for endobronchial biopsy specimens. Measurements and Main Results: After challenge, 57% of participants became infected. Preexisting influenza-specific CD8+ T cells in blood correlated strongly with a reduced viral load, which peaked at Day 3. Influenza-specific CD8+ T cells in BAL fluid were highly enriched and predominantly expressed the Trm markers CD69 and CD103. Comparison between preinfection CD8+ T cells in BAL fluid and blood by using RNA sequencing revealed 3,928 differentially expressed genes, including all major Trm-cell markers. However, gene set enrichment analysis of BAL-fluid CD8+ T cells showed primarily innate cell-related pathways and, during infection, included upregulation of innate chemokines (Cxcl1, Cxcl10, and Cxcl16) that were also expressed by CD8+ cells in bronchial tissues. Conclusions: CD8+ Trm cells in the human lung display innate-like gene and protein expression that demonstrates blurred divisions between innate and adaptive immunity. Clinical study registered with www.clinicaltrials.gov (NCT02755948).


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Inata/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Imunidade Adaptativa/genética , Adolescente , Adulto , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/virologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocinas/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Influenza Humana/genética , Influenza Humana/virologia , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Cinética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Carga Viral , Adulto Jovem
3.
Front Immunol ; 11: 613496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613536

RESUMO

Systems vaccinology has been applied to detect signatures of human vaccine induced immunity but its ability, together with high definition in vivo clinical imaging is not established to predict vaccine reactogenicity. Within two European Commission funded high impact programs, BIOVACSAFE and ADITEC, we applied high resolution positron emission tomography/computed tomography (PET/CT) scanning using tissue-specific and non-specific radioligands together with transcriptomic analysis of muscle biopsies in a clinical model systematically and prospectively comparing vaccine-induced immune/inflammatory responses. 109 male participants received a single immunization with licensed preparations of either AS04-adjuvanted hepatitis B virus vaccine (AHBVV); MF59C-adjuvanted (ATIV) or unadjuvanted seasonal trivalent influenza vaccine (STIV); or alum-OMV-meningococcal B protein vaccine (4CMenB), followed by a PET/CT scan (n = 54) or an injection site muscle biopsy (n = 45). Characteristic kinetics was observed with a localized intramuscular focus associated with increased tissue glycolysis at the site of immunization detected by 18F-fluorodeoxyglucose (FDG) PET/CT, peaking after 1-3 days and strongest and most prolonged after 4CMenB, which correlated with clinical experience. Draining lymph node activation peaked between days 3-5 and was most prominent after ATIV. Well defined uptake of the immune cell-binding radioligand 11C-PBR28 was observed in muscle lesions and draining lymph nodes. Kinetics of muscle gene expression module upregulation reflected those seen previously in preclinical models with a very early (~6hrs) upregulation of monocyte-, TLR- and cytokine/chemokine-associated modules after AHBVV, in contrast to a response on day 3 after ATIV, which was bracketed by whole blood responses on day 1 as antigen presenting, inflammatory and innate immune cells trafficked to the site of immunization, and on day 5 associated with activated CD4+ T cells. These observations confirm the use of PET/CT, including potentially tissue-, cell-, or cytokine/chemokine-specific radioligands, is a safe and ethical quantitative technique to compare candidate vaccine formulations and could be safely combined with biopsy to guide efficient collection of samples for integrated whole blood and tissue systems vaccinology in small-scale but intensive human clinical models of immunization and to accelerate clinical development and optimisation of vaccine candidates, adjuvants, and formulations.


Assuntos
Adjuvantes Imunológicos/metabolismo , Fluordesoxiglucose F18/metabolismo , Linfonodos/metabolismo , Músculos/metabolismo , Transcriptoma/imunologia , Vacinas/metabolismo , Adolescente , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/imunologia , Feminino , Humanos , Imunização/métodos , Cinética , Linfonodos/imunologia , Masculino , Pessoa de Meia-Idade , Músculos/imunologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Vacinação/métodos , Vacinas/imunologia , Adulto Jovem
4.
Front Immunol ; 10: 89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30766535

RESUMO

Human immune system mice are highly valuable for in vivo dissection of human immune responses. Although they were employed for analyzing tuberculosis (TB) disease, there is little data on the spatial organization and cellular composition of human immune cells in TB granuloma pathology in this model. We demonstrate that human immune system mice, generated by transplanted human fetal liver derived hematopoietic stem cells develop a continuum of pulmonary lesions upon Mycobacterium tuberculosis aerosol infection. In particular, caseous necrotic granulomas, which contribute to prolonged TB treatment time, developed, and had cellular phenotypic spatial-organization similar to TB patients. By comparing two recommended drug regimens, we confirmed observations made in clinical settings: Adding Moxifloxacin to a classical chemotherapy regimen had no beneficial effects on bacterial eradication. We consider this model instrumental for deeper understanding of human specific features of TB pathogenesis and of particular value for the pre-clinical drug development pipeline.


Assuntos
Antituberculosos/uso terapêutico , Granuloma/tratamento farmacológico , Pulmão/imunologia , Mycobacterium tuberculosis/fisiologia , Tuberculose Pulmonar/tratamento farmacológico , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Granuloma/patologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Moxifloxacina/uso terapêutico , Tuberculose Pulmonar/patologia
5.
Sci Rep ; 8(1): 1520, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367626

RESUMO

Mycobacterium tuberculosis (Mtb) is a life-threatening pathogen in humans. Bacterial infection of macrophages usually triggers strong innate immune mechanisms, including IL-1 cytokine secretion. The newer member of the IL-1 family, IL-36, was recently shown to be involved in cellular defense against Mtb. To unveil the underlying mechanism of IL-36 induced antibacterial activity, we analyzed its role in the regulation of cholesterol metabolism, together with the involvement of Liver X Receptor (LXR) in this process. We report that, in Mtb-infected macrophages, IL-36 signaling modulates cholesterol biosynthesis and efflux via LXR. Moreover, IL-36 induces the expression of cholesterol-converting enzymes and the accumulation of LXR ligands, such as oxysterols. Ultimately, both IL-36 and LXR signaling play a role in the regulation of antimicrobial peptides expression and in Mtb growth restriction. These data provide novel evidence for the importance of IL-36 and cholesterol metabolism mediated by LXR in cellular host defense against Mtb.


Assuntos
Colesterol/metabolismo , Interações Hospedeiro-Patógeno , Interleucina-1/metabolismo , Receptores X do Fígado/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Peptídeos Catiônicos Antimicrobianos/biossíntese , Células HEK293 , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Células THP-1
6.
J Infect Dis ; 214(3): 464-74, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27389350

RESUMO

Tuberculosis remains a major killer worldwide, not the least because of our incomplete knowledge of protective and pathogenic immune mechanism. The roles of the interleukin 1 (IL-1) and interleukin 18 pathways in host defense are well established, as are their regulation through the inflammasome complex. In contrast, the regulation of interleukin 36γ (IL-36γ), a recently described member of the IL-1 family, and its immunological relevance in host defense remain largely unknown. Here we show that Mycobacterium tuberculosis infection of macrophages induces IL-36γ production in a 2-stage-regulated fashion. In the first stage, microbial ligands trigger host Toll-like receptor and MyD88-dependent pathways, leading to IL-36γ secretion. In the second stage, endogenous IL-1ß and interleukin 18 further amplify IL-36γ synthesis. The relevance of this cytokine in the control of M. tuberculosis is demonstrated by IL-36γ-induced antimicrobial peptides and IL-36 receptor-dependent restriction of M. tuberculosis growth. Thus, we provide first insight into the induction and regulation of the proinflammatory cytokine IL-36γ during tuberculosis.


Assuntos
Interleucina-1/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Animais , Linhagem Celular , Humanos , Interleucina-1/deficiência , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
J Infect Dis ; 210(11): 1700-10, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24987031

RESUMO

BACKGROUND: Epithelioid, foam, and multinucleated giant cells (MNGCs) are characteristics of tuberculosis granulomas, yet the precise genesis and functions of these transformed macrophages are unclear. We evaluated the role of platelets as drivers of macrophage transformation in mycobacterial infection. METHODS: We employed flow cytometry and microscopy to assess cellular phenotype and phagocytosis. Immune assays allowed quantification of cytokines and chemokines, whereas gene microarray technology was applied to estimate global transcriptome alterations. Immunohistochemical investigations of tuberculosis granulomas substantiated our findings at the site of infection. RESULTS: Monocytes differentiated in presence of platelets (MP-Macs) acquired a foamy, epithelioid appearance and gave rise to MNGCs (MP-MNGCs). MP-Macs up-regulated activation markers, phagocytosed mycobacteria, and released abundant interleukin 10. Upon extended culture, MP-Macs shared transcriptional features with epithelioid cells and M2 macrophages and up-regulated CXCL5 transcripts. In line with this, CXCL5 concentrations were significantly increased in airways of active tuberculosis patients. The platelet-specific CD42b antigen was detected in MP-Macs, likewise in macrophages, MNGCs, and epithelioid cells within tuberculosis granulomas, along with the platelet aggregation-inducing factor PDPN. CONCLUSIONS: Platelets drive macrophage differentiation into MNGCs with characteristics of epithelioid, foam, and giant cells observed in tuberculosis granulomas. Our data define platelets as novel participants in tuberculosis pathogenesis.


Assuntos
Plaquetas/metabolismo , Células Espumosas/imunologia , Células Espumosas/patologia , Imunomodulação , Monócitos/imunologia , Monócitos/patologia , Mycobacterium/imunologia , Adulto , Biomarcadores , Técnicas de Cocultura , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Granuloma/genética , Granuloma/imunologia , Granuloma/microbiologia , Granuloma/patologia , Humanos , Interleucina-10/biossíntese , Lipopolissacarídeos/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Fagocitose , Ativação Plaquetária , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Tuberculose/patologia
8.
PLoS One ; 7(7): e40221, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844400

RESUMO

Although tuberculosis (TB) causes more deaths than any other pathogen, most infected individuals harbor the pathogen without signs of disease. We explored the metabolome of >400 small molecules in serum of uninfected individuals, latently infected healthy individuals and patients with active TB. We identified changes in amino acid, lipid and nucleotide metabolism pathways, providing evidence for anti-inflammatory metabolomic changes in TB. Metabolic profiles indicate increased activity of indoleamine 2,3 dioxygenase 1 (IDO1), decreased phospholipase activity, increased abundance of adenosine metabolism products, as well as indicators of fibrotic lesions in active disease as compared to latent infection. Consistent with our predictions, we experimentally demonstrate TB-induced IDO1 activity. Furthermore, we demonstrate a link between metabolic profiles and cytokine signaling. Finally, we show that 20 metabolites are sufficient for robust discrimination of TB patients from healthy individuals. Our results provide specific insights into the biology of TB and pave the way for the rational development of metabolic biomarkers for TB.


Assuntos
Tolerância Imunológica , Metabolômica , Estresse Fisiológico , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Análise por Conglomerados , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/metabolismo , Cinurenina/biossíntese , Masculino , Tuberculose Pulmonar/enzimologia , Tuberculose Pulmonar/fisiopatologia
9.
Eur Respir J ; 40(6): 1450-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22441737

RESUMO

Regulation of specific immune responses following exposure to Mycobacterium tuberculosis in humans and the role of regulatory T (Treg) cells in the immune control of latent infection with M. tuberculosis are incompletely understood. Latent infection was assayed by an interferon-γ release assay (IGRA) in healthcare workers regularly exposed to tuberculosis (TB) patients and in household TB contacts in Germany. Immunophenotypes of bronchoalveolar lavage (BAL) mononuclear cells and peripheral blood mononuclear cells (PBMCs) were analysed by fluorescence-activated cell sorting. All TB contacts with latent infection (n=15) had increased (p<0.0001) frequencies of CD4+ CD25+ CD127- Treg cells (median 2.12%, interquartile range (IQR) 1.63-3.01%) among BAL mononuclear cells compared with contacts (n=25) with negative IGRA results (median 0.68%, IQR 0.32-0.96%) No differences were seen when PBMC immunophenotypes of IGRA+ and IGRA- TB contacts were compared (IGRA+ median 9.6%, IQR 5.9-10.1%; IGRA- median 7.7%, IQR 4.6-11.3%; p=0.47). Five out of 25 contacts with negative blood IGRAs showed a positive IGRA from BAL cells, possibly indicating a limited local immune response. In Germany, latent infection with M. tuberculosis, as defined by a positive M. tuberculosis-specific IGRA response on cells from the peripheral blood, is characterised by an increased frequency of Treg cells in the BAL.


Assuntos
Tuberculose Latente/microbiologia , Pulmão/metabolismo , Mycobacterium tuberculosis/metabolismo , Linfócitos T Reguladores/microbiologia , Adulto , Idoso , Lavagem Broncoalveolar , Broncoscopia/métodos , Separação Celular , Feminino , Citometria de Fluxo , Alemanha , Humanos , Imunofenotipagem , Interferon gama/metabolismo , Tuberculose Latente/diagnóstico , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/microbiologia , Masculino , Pessoa de Meia-Idade
10.
J Immunol ; 169(10): 5897-903, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12421973

RESUMO

Herpetic stromal keratitis (HSK) is an immunopathologic disease triggered by infection of the cornea with HSV. Key events in HSK involve the interaction between cornea-infiltrating inflammatory cells and resident cells. This interaction, in which macrophages, producing IL-1 and TNF-alpha, and IFN-gamma-producing Th1 cells play a crucial role, results in the local secretion of immune-modulatory factors and a major influx of neutrophils causing corneal lesions and blindness. The Th1-derived cytokine IL-17 has been shown to play an important role in several inflammatory diseases characterized by a massive infiltration of neutrophils into inflamed tissue. Here we show that IL-17 is expressed in corneas from patients with HSK and that the IL-17R is constitutively expressed by human corneal fibroblasts (HCF). IL-17 exhibited a strong synergistic effect with TNF-alpha on the induction of IL-6 and IL-8 secretion by cultured HCF. Secreted IL-8 in these cultures had a strong chemotactic effect on neutrophils. IL-17 also enhanced TNF-alpha- and IFN-gamma-induced secretion of macrophage-inflammatory proteins 1alpha and 3alpha, while inhibiting the induced secretion of RANTES. Furthermore, considerable levels of IFN-gamma-inducible protein 10 and matrix metalloproteinase 1 were measured in stimulated HCF cultures, while the constitutive secretion of monocyte chemotactic protein 1 remained unaffected. The data presented suggest that IL-17 may play an important role in the induction and/or perpetuation of the immunopathologic processes in human HSK by modulating the secretion of proinflammatory and neutrophil chemotactic factors by corneal resident fibroblasts.


Assuntos
Adjuvantes Imunológicos/biossíntese , Quimiocinas/biossíntese , Córnea/imunologia , Córnea/metabolismo , Fibroblastos/imunologia , Fibroblastos/metabolismo , Interleucina-17/biossíntese , Ceratite Herpética/imunologia , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/fisiologia , Linhagem Celular , Células Cultivadas , Quimiocinas/metabolismo , Córnea/patologia , Sinergismo Farmacológico , Fibroblastos/enzimologia , Humanos , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Interleucina-17/fisiologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Interleucina-8/fisiologia , Ceratite Herpética/patologia , Metaloproteinase 1 da Matriz/metabolismo , Infiltração de Neutrófilos/imunologia , Receptores de Interleucina/biossíntese , Receptores de Interleucina-17 , Proteínas Recombinantes/biossíntese , Células Estromais/imunologia , Células Estromais/metabolismo , Células Estromais/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA