Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474415

RESUMO

Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.


Assuntos
Interleucina-15 , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais , Células K562 , Linfócitos T , Citocinas/metabolismo , Receptores de Antígenos Quiméricos/metabolismo
3.
Cancer Cell ; 41(10): 1689-1695, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37714150

RESUMO

Successful implementation of adoptive cell therapy (ACT) of cancer requires comprehensively addressing biological and practical challenges. This approach has been largely overlooked, resulting in a gap between the potential of ACT and its actual effectiveness. We summarize the most promising technical strategies in creating an "ideal" ACT product, focusing on chimeric antigen receptor (CAR)-engineered cells. Since many requirements for effective ACT are common to most cancers, what we outline here might have a broader impact.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética
4.
Oncoimmunology ; 12(1): 2163785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632566

RESUMO

The SARS-CoV-2 pandemic still represents a threat for immunosuppressed and hematological malignancy (HM) bearing patients, causing increased morbidity and mortality. Given the low anti-SARSCoV-2 IgG titers post-vaccination, the COVID-19 threat prompted the prophylactic use of engineered anti-SARS-CoV-2 monoclonal antibodies. In addition, potential clinical significance of T cell responses has been overlooked during the first waves of the pandemic, calling for additional in-depth studies. We reported that the polarity and the repertoire of T cell immune responses govern the susceptibility to SARS-CoV-2 infection in health care workers and solid cancer patients. Here, we longitudinally analyzed humoral and cellular immune responses at each BNT162b2 mRNA vaccine injection in 47 HM patients under therapy. Only one-third of HM, mostly multiple myeloma (MM) bearing patients, could mount S1-RBD-specific IgG responses following BNT162b2 mRNA vaccines. This vaccine elicited a S1-RBD-specific Th1 immune response in about 20% patients, mostly in MM and Hodgkin lymphoma, while exacerbating Th2 responses in the 10% cases that presented this recognition pattern at baseline (mostly rituximab-treated patients). Performing a third booster barely improved the percentage of patients developing an S1-RBD-specific Th1 immunity and failed to seroconvert additional HM patients. Finally, 16 patients were infected with SARS-CoV-2, of whom 6 developed a severe infection. Only S1-RBD-specific Th1 responses were associated with protection against SARS-CoV2 infection, while Th2 responses or anti-S1-RBD IgG titers failed to correlate with protection. These findings herald the paramount relevance of vaccine-induced Th1 immune responses in hematological malignancies.


Assuntos
COVID-19 , Neoplasias Hematológicas , Mieloma Múltiplo , Vacinas , Humanos , COVID-19/prevenção & controle , Vacina BNT162 , SARS-CoV-2 , RNA Viral , Neoplasias Hematológicas/complicações , Anticorpos Antivirais , Imunoglobulina G
5.
Viruses ; 14(7)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35891555

RESUMO

The main aim of this study was to describe the clinical and immunological outcomes, as well as the inflammatory profile, of patients with advanced HIV in an assisted-living facility in which an outbreak of SARS-CoV-2 occurred. SARS-CoV-2 humoral and specific T-cell response were analyzed in patients with HIV infection and COVID-19; as a secondary objective of the analysis, levels of the inflammatory markers (IL-1ß, IL-6, IL-8, and TNFα) were tested in the HIV/COVID-19 group, in HIV-positive patients without COVID-19, and in HIV-negative patients with mild/moderate COVID-19. Antibody kinetics and ability to neutralize SARS-CoV-2 were evaluated by ELISA assay, as well as the inflammatory cytokines; SARS-CoV-2 specific T-cell response was quantified by ELISpot assay. Mann−Whitney or Kruskal−Wallis tests were used for comparisons. Thirty patients were included with the following demographics: age, 57 years old (IQR, 53−62); 76% male; median HIV duration of infection, 18 years (15−29); nadir of CD4, 57/mmc (23−100) current CD4 count, 348/mmc (186−565). Furthermore, 83% had at least one comorbidity. The severity of COVID-19 was mild/moderate, and the overall mortality rate was 10% (3/30). Additionally, 90% of patients showed positive antibody titers and neutralizing activity, with a 100% positive SARS-CoV-2 specific T-cell response over time, suggesting the ability to induce an effective specific immunity. Significantly higher levels of IL-6, IL-8, and TNF-α in COVID-19 without HIV vs. HIV/COVID-19 patients (p < 0.05) were observed. HIV infection did not seem to negatively impact COVID-19-related inflammatory state and immunity. Further data are mandatory to evaluate the persistence of these immunity and its ability to expand after exposure and/or vaccination.


Assuntos
COVID-19 , Infecções por HIV , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/epidemiologia , COVID-19/imunologia , Surtos de Doenças , Feminino , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Humanos , Imunidade Celular , Interleucina-6 , Interleucina-8 , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
6.
Sci Transl Med ; 14(627): eabj1996, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34698501

RESUMO

Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are essential for ending the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand alone. We describe a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized prefusion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein named GRAd-COV2. We assessed the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. For this purpose, a phase 1, dose-escalation, open-labeled trial was conducted including 90 healthy participants (45 aged 18 to 55 years old and 45 aged 65 to 85 years old) who received a single intramuscular administration of GRAd-COV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious adverse events were reported. Four weeks after vaccination, seroconversion to spike protein and receptor binding domain was achieved in 43 of 44 young volunteers and in 45 of 45 older participants. Consistently, neutralizing antibodies were detected in 42 of 44 younger-age and 45 of 45 older-age volunteers. In addition, GRAd-COV2 induced a robust and T helper 1 cell (TH1)­skewed T cell response against the spike protein in 89 of 90 participants from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support the further development of this vaccine.


Assuntos
Vacinas contra Adenovirus , COVID-19 , Adenoviridae , Idoso , Animais , Vacinas contra COVID-19 , Gorilla gorilla , Humanos , SARS-CoV-2
7.
Clin Microbiol Rev ; 34(4): e0006421, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34612662

RESUMO

There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.


Assuntos
Doenças Transmissíveis , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Antibacterianos , Doenças Transmissíveis/tratamento farmacológico , Humanos , Imunomodulação
8.
Front Immunol ; 12: 592031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335558

RESUMO

Successful outcome of immune checkpoint blockade in patients with solid cancers is in part associated with a high tumor mutational burden (TMB) and the recognition of private neoantigens by T-cells. The quality and quantity of target recognition is determined by the repertoire of 'neoepitope'-specific T-cell receptors (TCRs) in tumor-infiltrating lymphocytes (TIL), or peripheral T-cells. Interferon gamma (IFN-γ), produced by T-cells and other immune cells, is essential for controlling proliferation of transformed cells, induction of apoptosis and enhancing human leukocyte antigen (HLA) expression, thereby increasing immunogenicity of cancer cells. TCR αß-dependent therapies should account for tumor heterogeneity and availability of the TCR repertoire capable of reacting to neoepitopes and functional HLA pathways. Immunogenic epitopes in the tumor-stroma may also be targeted to achieve tumor-containment by changing the immune-contexture in the tumor microenvironment (TME). Non protein-coding regions of the tumor-cell genome may also contain many aberrantly expressed, non-mutated tumor-associated antigens (TAAs) capable of eliciting productive anti-tumor immune responses. Whole-exome sequencing (WES) and/or RNA sequencing (RNA-Seq) of cancer tissue, combined with several layers of bioinformatic analysis is commonly used to predict possible neoepitopes present in clinical samples. At the ImmunoSurgery Unit of the Champalimaud Centre for the Unknown (CCU), a pipeline combining several tools is used for predicting private mutations from WES and RNA-Seq data followed by the construction of synthetic peptides tailored for immunological response assessment reflecting the patient's tumor mutations, guided by MHC typing. Subsequent immunoassays allow the detection of differential IFN-γ production patterns associated with (intra-tumoral) spatiotemporal differences in TIL or peripheral T-cells versus TIL. These bioinformatics tools, in addition to histopathological assessment, immunological readouts from functional bioassays and deep T-cell 'adaptome' analyses, are expected to advance discovery and development of next-generation personalized precision medicine strategies to improve clinical outcomes in cancer in the context of i) anti-tumor vaccination strategies, ii) gauging mutation-reactive T-cell responses in biological therapies and iii) expansion of tumor-reactive T-cells for the cellular treatment of patients with cancer.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Epitopos de Linfócito T/imunologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Biologia Computacional , Humanos , Neoplasias/terapia , Medicina de Precisão , Linfócitos T/transplante , Sequenciamento Completo do Genoma
9.
Cell Death Differ ; 28(12): 3297-3315, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34230615

RESUMO

Patients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus-host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and noncancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Cancer patients with a prolonged SARS-CoV-2 RNA detection exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of nonconventional monocytes, and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T-helper cells, and non-naive Granzyme B+FasL+, EomeshighTCF-1high, PD-1+CD8+ Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity, and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long-term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death.


Assuntos
COVID-19/complicações , COVID-19/virologia , Linfopenia/complicações , Neoplasias/complicações , RNA Viral/análise , SARS-CoV-2/genética , Eliminação de Partículas Virais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , DNA Bacteriano/sangue , Enterobacteriaceae/genética , Feminino , Humanos , Interferon Tipo I/sangue , Linfopenia/virologia , Masculino , Micrococcaceae/genética , Pessoa de Meia-Idade , Nasofaringe/virologia , Neoplasias/diagnóstico , Neoplasias/mortalidade , Pandemias , Prognóstico , Fatores de Tempo , Adulto Jovem
10.
Curr Opin Pulm Med ; 27(3): 205-209, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33629969

RESUMO

PURPOSE OF REVIEW: Severe acute respiratory syndrome coronavirus-2-induced hyperinflammation is a major cause of death or end-organ dysfunction in COVID-19 patients. We review adjunct host-directed therapies (HDTs) for COVID-19 management. RECENT FINDINGS: The use of umbilical cord-derived mesenchymal stem cells as HDT for COVID-19 has been shown to be safe in phase 1 and 2 trials. Trials of anti-interleukin-6 receptor antibodies show promising mortality benefit in hospitalized COVID-19 patients. Repurposed drugs and monoclonal antibodies targeting specific cytokines acting on different aspects of the pro- and anti-inflammatory cascades are under evaluation. SUMMARY: A range of HDTs shows promise for reducing mortality and improving long term disability in patients with severe COVID-19, and require evaluation in randomized, controlled trials.


Assuntos
COVID-19 , Fatores Imunológicos/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Terapia de Alvo Molecular/métodos , COVID-19/imunologia , COVID-19/terapia , Humanos , Inflamação/imunologia , Inflamação/terapia , SARS-CoV-2
11.
Signal Transduct Target Ther ; 6(1): 58, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568628

RESUMO

Treatment of severe Coronavirus Disease 2019 (COVID-19) is challenging. We performed a phase 2 trial to assess the efficacy and safety of human umbilical cord-mesenchymal stem cells (UC-MSCs) to treat severe COVID-19 patients with lung damage, based on our phase 1 data. In this randomized, double-blind, and placebo-controlled trial, we recruited 101 severe COVID-19 patients with lung damage. They were randomly assigned at a 2:1 ratio to receive either UC-MSCs (4 × 107 cells per infusion) or placebo on day 0, 3, and 6. The primary endpoint was an altered proportion of whole lung lesion volumes from baseline to day 28. Other imaging outcomes, 6-minute walk test (6-MWT), maximum vital capacity, diffusing capacity, and adverse events were recorded and analyzed. In all, 100 COVID-19 patients were finally received either UC-MSCs (n = 65) or placebo (n = 35). UC-MSCs administration exerted numerical improvement in whole lung lesion volume from baseline to day 28 compared with the placebo (the median difference was -13.31%, 95% CI -29.14%, 2.13%, P = 0.080). UC-MSCs significantly reduced the proportions of solid component lesion volume compared with the placebo (median difference: -15.45%; 95% CI -30.82%, -0.39%; P = 0.043). The 6-MWT showed an increased distance in patients treated with UC-MSCs (difference: 27.00 m; 95% CI 0.00, 57.00; P = 0.057). The incidence of adverse events was similar in the two groups. These results suggest that UC-MSCs treatment is a safe and potentially effective therapeutic approach for COVID-19 patients with lung damage. A phase 3 trial is required to evaluate effects on reducing mortality and preventing long-term pulmonary disability. (Funded by The National Key R&D Program of China and others. ClinicalTrials.gov number, NCT04288102.


Assuntos
COVID-19/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , SARS-CoV-2 , Cordão Umbilical , Idoso , Aloenxertos , COVID-19/mortalidade , COVID-19/fisiopatologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
12.
Int J Infect Dis ; 105: 49-53, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33578018

RESUMO

BACKGROUND/OBJECTIVES: A dysregulated inflammatory profile plays an important role in coronavirus disease-2019 (COVID-19) pathogenesis. Moreover, the depletion of lymphocytes is typically associated with an unfavourable disease course. We studied the role and impact of p53 and deacetylase Sirtuin 1 (SIRT1) on lymph-monocyte homeostasis and their possible effect on T and B cell signalling. METHODS: Gene expression analysis and flow cytometry were performed on peripheral blood mononuclear cells (PBMC) of 35 COVID-19 patients and 10 healthy donors (HD). Inflammatory cytokines, the frequency of Annexin+ cells among CD3+ T cells and CD19+ B cell subsets were quantified. RESULTS: PBMC from COVID-19 patients had a higher p53 expression, and higher concentrations of plasma proinflammatory cytokines (IL1ß, TNF-α, IL8, and IL6) than HD. Deacetylase Sirtuin 1 (SIRT1) expression was significantly decreased in COVID-19 patients and was negatively correlated with p53 (p = 0.003 and r = -0.48). A lower expression of IL-7R and B Cell linker (BLNK), key genes for lymphocyte homeostasis and function, was observed in COVID-19 than in HD. The reduction of IgK and IgL chains was seen in lymphopenic COVID-19 patients. A significant increase in both apoptotic B and T cells were observed. Inflammatory cytokines correlated positively with p53 (IL-1ß: r = 0.5 and p = 0.05; IL-8: r = 0.5 and p = 0.05) and negatively with SIRT1 (IL1-ß: r = -0.5 and p = 0.04; TNF-α: r = -0.4 and p = 0.04). CONCLUSIONS: Collectively, our data indicate that the inflammatory environment, the dysregulated p53/SIRT1 axis and low expression of IL7R and BLNK may impact cell survival, B cell signalling and antibody production in COVID-19 patients. Further studies are required to define the functional impact of low BLNK/IL7R expression during severe acute respiratory syndrome coronavirus-2 infection.


Assuntos
COVID-19/imunologia , Homeostase , Linfócitos/imunologia , SARS-CoV-2 , Sirtuína 1/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Idoso , Citocinas/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Adv Exp Med Biol ; 1273: 175-195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119882

RESUMO

We review state-of-the-art in translational and clinical studies focusing on the tumor microenvironment (TME) with a focus on tumor-infiltrating B cells (TIBs). The TME is a dynamic matrix of mutations, immune-regulatory networks, and distinct cell-to-cell interactions which collectively impact on disease progress. We discuss relevant findings concerning B cells in pancreatic cancer, the concepts of "bystander" B cells, the role of antigen-specific B cells contributing to augmenting anticancer-directed immune responses, the role of B cells as prognostic markers for response to checkpoint inhibitors (ICBs), and the potential use in adoptive cell tumor-infiltrating lymphocyte (TIL) products.


Assuntos
Linfócitos B/citologia , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral/imunologia , Linfócitos B/imunologia , Humanos , Linfócitos do Interstício Tumoral , Neoplasias Pancreáticas/terapia , Medicina de Precisão
14.
Cell Death Dis ; 11(10): 921, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110074

RESUMO

The immunological mechanisms underlying the clinical presentation of SARS-CoV-2 infection and those influencing the disease outcome remain to be defined. Myeloid-derived suppressor cells (MDSC) have been described to be highly increased during COVID-19, however, their role remains elusive. We performed an in depth analysis of MDSC in 128 SARS-CoV-2 infected patients. Polymorphonuclear (PMN)-MDSC expanded during COVID-19, in particular in patients who required intensive care treatments, and correlated with IL-1ß, IL-6, IL-8, and TNF-α plasma levels. PMN-MDSC inhibited T-cells IFN-γ production upon SARS-CoV-2 peptides stimulation, through TGF-ß- and iNOS-mediated mechanisms, possibly contrasting virus elimination. Accordingly, a multivariate regression analysis found a strong association between PMN-MDSC percentage and fatal outcome of the disease. The PMN-MDSC frequency was higher in non-survivors than survivors at the admission time, followed by a decreasing trend. Interestingly, this trend was associated with IL-6 increase in non-survivors but not in survivors. In conclusion, this study indicates PMN-MDSC as a novel factor in the pathogenesis of SARS-CoV2 infection, and open up to new therapeutic options.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/patologia , Células Supressoras Mieloides/imunologia , Pneumonia Viral/patologia , Linfócitos T/imunologia , Idoso , Área Sob a Curva , Betacoronavirus/isolamento & purificação , Betacoronavirus/metabolismo , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/citologia , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Pandemias , Peptídeos/imunologia , Peptídeos/metabolismo , Pneumonia Viral/imunologia , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Modelos de Riscos Proporcionais , Curva ROC , SARS-CoV-2 , Taxa de Sobrevida , Linfócitos T/citologia , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta/sangue , Fator de Crescimento Transformador beta/metabolismo
15.
Signal Transduct Target Ther ; 5(1): 172, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855385

RESUMO

No effective drug treatments are available for coronavirus disease 2019 (COVID-19). Host-directed therapies targeting the underlying aberrant immune responses leading to pulmonary tissue damage, death, or long-term functional disability in survivors require clinical evaluation. We performed a parallel assigned controlled, non-randomized, phase 1 clinical trial to evaluate the safety of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) infusions in the treatment of patients with moderate and severe COVID-19 pulmonary disease. The study enrolled 18 hospitalized patients with COVID-19 (n = 9 for each group). The treatment group received three cycles of intravenous infusion of UC-MSCs (3 × 107 cells per infusion) on days 0, 3, and 6. Both groups received standard COVID-treatment regimens. Adverse events, duration of clinical symptoms, laboratory parameters, length of hospitalization, serial chest computed tomography (CT) images, the PaO2/FiO2 ratio, dynamics of cytokines, and IgG and IgM anti-SARS-CoV-2 antibodies were analyzed. No serious UC-MSCs infusion-associated adverse events were observed. Two patients receiving UC-MSCs developed transient facial flushing and fever, and one patient developed transient hypoxia at 12 h post UC-MSCs transfusion. Mechanical ventilation was required in one patient in the treatment group compared with four in the control group. All patients recovered and were discharged. Our data show that intravenous UC-MSCs infusion in patients with moderate and severe COVID-19 is safe and well tolerated. Phase 2/3 randomized, controlled, double-blinded trials with long-term follow-up are needed to evaluate the therapeutic use of UC-MSCs to reduce deaths and improve long-term treatment outcomes in patients with serious COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Infecções por Coronavirus/terapia , Células-Tronco Hematopoéticas/virologia , Transplante de Células-Tronco Mesenquimais/métodos , Pneumonia Viral/terapia , Adulto , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Combinação de Medicamentos , Feminino , Glucocorticoides/uso terapêutico , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Lopinavir , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Respiração Artificial , Ritonavir , SARS-CoV-2 , Índice de Gravidade de Doença , Resultado do Tratamento
16.
Semin Immunopathol ; 42(3): 279-313, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32519148

RESUMO

Modulation of immune responses by nutrients is an important area of study in cellular biology and clinical sciences in the context of cancer therapies and anti-pathogen-directed immune responses in health and disease. We review metabolic pathways that influence immune cell function and cellular persistence in chronic infections. We also highlight the role of nutrients in altering the tissue microenvironment with lessons from the tumor microenvironment that shapes the quality and quantity of cellular immune responses. Multiple layers of biological networks, including the nature of nutritional supplements, the genetic background, previous exposures, and gut microbiota status have impact on cellular performance and immune competence against molecularly defined targets. We discuss how immune metabolism determines the differentiation pathway of antigen-specific immune cells and how these insights can be explored to devise better strategies to strengthen anti-pathogen-directed immune responses, while curbing unwanted, non-productive inflammation.


Assuntos
Microbioma Gastrointestinal , Microambiente Tumoral , Humanos , Imunidade Celular , Linfócitos , Redes e Vias Metabólicas
17.
J Transl Med ; 18(1): 233, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522207

RESUMO

BACKGROUND: Epidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment modalities and to develop effective prevention strategies. Transcriptomic and proteomic data on the host response against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are therefore a key source of information. METHODS: We investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS-CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV-host interactome was carried out in order to provide a theoretic host-pathogen interaction model for HCoV infections and in order to translate the results in prediction for SARS-CoV-2 pathogenesis. The 3D model of S-glycoprotein of SARS-CoV-2 was compared to the structure of the corresponding SARS-CoV, HCoV-229E and MERS-CoV S-glycoprotein. SARS-CoV, MERS-CoV, HCoV-229E and the host interactome were inferred through published protein-protein interactions (PPI) as well as gene co-expression, triggered by HCoV S-glycoprotein in host cells. RESULTS: Although the amino acid sequences of the S-glycoprotein were found to be different between the various HCoV, the structures showed high similarity, but the best 3D structural overlap shared by SARS-CoV and SARS-CoV-2, consistent with the shared ACE2 predicted receptor. The host interactome, linked to the S-glycoprotein of SARS-CoV and MERS-CoV, mainly highlighted innate immunity pathway components, such as Toll Like receptors, cytokines and chemokines. CONCLUSIONS: In this paper, we developed a network-based model with the aim to define molecular aspects of pathogenic phenotypes in HCoV infections. The resulting pattern may facilitate the process of structure-guided pharmaceutical and diagnostic research with the prospect to identify potential new biological targets.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Modelos Biológicos , Pneumonia Viral/genética , Pneumonia Viral/virologia , Mapeamento de Interação de Proteínas , COVID-19 , Humanos , Glicoproteínas de Membrana/metabolismo , Pandemias , SARS-CoV-2 , Transdução de Sinais/genética , Proteínas do Envelope Viral
18.
Int J Infect Dis ; 96: 431-439, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32425638

RESUMO

As of May 17th 2020, the novel coronavirus disease 2019 (COVID-19) pandemic has caused 307,395 deaths worldwide, out of 3,917,366 cases reported to the World Health Organization. No specific treatments for reducing mortality or morbidity are yet available. Deaths from COVID-19 will continue to rise globally until effective and appropriate treatments and/or vaccines are found. In search of effective treatments, the global medical, scientific, pharma and funding communities have rapidly initiated over 500 COVID-19 clinical trials on a range of antiviral drug regimens and repurposed drugs in various combinations. A paradigm shift is underway from the current focus of drug development targeting the pathogen, to advancing cellular Host-Directed Therapies (HDTs) for tackling the aberrant host immune and inflammatory responses which underlie the pathogenesis of SARS-CoV-2 and high COVID-19 mortality rates. We focus this editorial specifically on the background to, and the rationale for, the use and evaluation of mesenchymal stromal (Stem) cells (MSCs) in treatment trials of patients with severe COVID-19 disease. Currently, the ClinicalTrials.gov and the WHO Clinical Trials Registry Platform (WHO ICTRP) report a combined 28 trials exploring the potential of MSCs or their products for treatment of COVID-19. MSCs should also be trialed for treatment of other circulating WHO priority Blueprint pathogens such as MERS-CoV which causes upto 34% mortality rates. It's about time funding agencies invested more into development MSCs per se, and also for a range of other HDTs, in combination with other therapeutic interventions. MSC therapy could turn out to be an important contribution to bringing an end to the high COVID-19 death rates and preventing long-term functional disability in those who survive disease.


Assuntos
Betacoronavirus , Infecções por Coronavirus/terapia , Transplante de Células-Tronco Mesenquimais , Pneumonia Viral/terapia , COVID-19 , Ensaios Clínicos como Assunto , Consenso , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/patologia , Humanos , Morbidade , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/mortalidade , Pneumonia Viral/patologia , SARS-CoV-2
19.
Front Microbiol ; 10: 962, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134013

RESUMO

The biology and clinical efficacy of immune cells from patients with infectious diseases or cancer are associated with metabolic programming. Host immune- and stromal-cell genetic and epigenetic signatures in response to the invading pathogen shape disease pathophysiology and disease outcomes. Directly linked to the immunometabolic axis is the role of the host microbiome, which is also discussed here in the context of productive immune responses to lung infections. We also present host-directed therapies (HDT) as a clinically viable strategy to refocus dysregulated immunometabolism in patients with infectious diseases, which requires validation in early phase clinical trials as adjuncts to conventional antimicrobial therapy. These efforts are expected to be continuously supported by newly generated basic and translational research data to gain a better understanding of disease pathology while devising new molecularly defined platforms and therapeutic options to improve the treatment of patients with pulmonary infections, particularly in relation to multidrug-resistant pathogens.

20.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018546

RESUMO

Immune responses to human cytomegalovirus (CMV) can be used to assess immune fitness in an individual. Further to its clinical significance in posttransplantation settings, emerging clinical and translational studies provide examples of immune correlates of protection pertaining to anti-CMV immune responses in the context of cancer or infectious diseases, e.g., tuberculosis. In this viewpoint, we provide a brief overview about CMV-directed immune reactivity and immune fitness in a clinical context and incorporate some of our own findings obtained from peripheral blood or tumour-infiltrating lymphocytes (TIL) from patients with advanced cancer. Observations in patients with solid cancers whose lesions contain both CMV and tumour antigen-specific T-cell subsets are highlighted, due to a possible CMV-associated "bystander" effect in amplifying local inflammation and subsequent tumour rejection. The role of tumour-associated antibodies recognising diverse CMV-derived epitopes is also discussed in light of anti-cancer immune responses. We discuss here the use of anti-CMV immune responses as a theranostic tool-combining immunodiagnostics with a personalised therapeutic potential-to improve treatment outcomes in oncological indications.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Neoplasias/virologia , Animais , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/terapia , Humanos , Imunidade , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Medicina de Precisão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA