Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Curr Issues Mol Biol ; 46(5): 4063-4105, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38785519

RESUMO

Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.

2.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675592

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, primarily associated with dopaminergic neuron depletion in the Substantia Nigra. Current treatment focuses on compensating for dopamine (DA) deficiency, but the blood-brain barrier (BBB) poses challenges for effective drug delivery. Using differentiated SH-SY5Y cells, we investigated the co-administration of DA and the antioxidant Grape Seed Extract (GSE) to study the cytobiocompability, the cytoprotection against the neurotoxin Rotenone, and their antioxidant effects. For this purpose, two solid lipid nanoparticle (SLN) formulations, DA-co-GSE-SLNs and GSE-ads-DA-SLNs, were synthesized. Such SLNs showed mean particle sizes in the range of 187-297 nm, zeta potential values in the range of -4.1--9.7 mV, and DA association efficiencies ranging from 35 to 82%, according to the formulation examined. The results showed that DA/GSE-SLNs did not alter cell viability and had a cytoprotective effect against Rotenone-induced toxicity and oxidative stress. In addition, this study also focused on the evaluation of Alpha-synuclein (aS) levels; SLNs showed the potential to modulate the Rotenone-mediated increase in aS levels. In conclusion, our study investigated the potential of SLNs as a delivery system for addressing PD, also representing a promising approach for enhanced delivery of pharmaceutical and antioxidant molecules across the BBB.


Assuntos
Sobrevivência Celular , Dopamina , Extrato de Sementes de Uva , Nanopartículas , Doença de Parkinson , Rotenona , alfa-Sinucleína , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/química , Dopamina/metabolismo , Nanopartículas/química , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/farmacologia , Rotenona/farmacologia , Linhagem Celular Tumoral , alfa-Sinucleína/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Estresse Oxidativo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Tamanho da Partícula , Lipossomos/química , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36360902

RESUMO

BACKGROUND: Phase 1 clinical trials represent a critical phase of drug development because new candidate therapeutic agents are tested for the first time on humans. Therefore, international guidelines and local laws have been released to mitigate and control possible risks for human health in agreement with the declaration of Helsinki and the international Good Clinical Practice principles. Despite numerous scientific works characterizing the registered clinical trials on ClinicalTrials.gov, the main features and trends of registered phase 1 clinical trials in Europe have not been investigated. This study is aimed at assessing the features and the temporal trend of distribution of phase 1 clinical studies, carried out in the five largest European countries over a ten-year period (2012-2021), and to evaluate the impact of the Italian regulatory framework on the activation of such studies. METHODS: The main data and characteristics of phase 1 clinical studies registered on the ClinicalTrials.gov database for France, Germany, Italy, Spain and the United Kingdom have been investigated and subsequently compared. The above-mentioned countries were selected based on similarities in terms of demographic and Gross Domestic Product (GDP) data available on official government websites. (3) Results: A total number of 6878 phase 1 clinical trials were registered for the five selected countries in the ClinicalTrials.gov database during the ten years analyzed; the studies were predominantly randomized (39.33%) and for-profit (76.64%). The most represented area of investigations was oncology (52.15%), followed by hematology (24.99%) and immunology (12.04%). The variability observed between the analyzed countries showed that the UK, Germany and France presented the highest reduction in the number of phase 1 clinical trials, while for Spain and Italy, a stable/increased trend was observed, although with a lower number of trials registered on the ClinicalTrials.gov database. (4) Conclusions: Italy displayed the lowest number of registered phase 1 clinical trials, even though it showed a stable trend over the years. In this regard, the Italian regulatory framework must urgently be adapted to that of other European countries (Spain has been the first country to implement the new Regulation (EU) No 536/2014) and streamline the process of clinical trial application to increase the attractiveness of the country. Moreover, nonprofit phase 1 clinical trials (which represent 19.81% of the total number of phase 1 clinical trials registered in Italy vs. 80.19% of profit phase 1 clinical studies) should be promoted and supported by the institutions, even from a financial point of view, to allow independent researchers to develop new therapeutic drugs.


Assuntos
Ensaios Clínicos Fase I como Assunto , Humanos , Europa (Continente) , França , Alemanha , Itália , Espanha
4.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297375

RESUMO

Osteoarthritis (OA) is a joint disease characterized by inflammation of the synovium, angiogenesis, cartilage degradation, and osteophyte formation. Harpagophytum Procumbens DC. ex Meisn., Boswellia Serrata Roxb., Curcuma longa L., Bromelain and Escin (Aesculus hippocastanum) are plants which extracts, together to Bromelain and Escin (Aesculus hippocastanum) are traditionally used in OA. However, their mechanistic role remains unclear. We aimed to investigate whether these bioactives alone or in combination (as in Flonat Fast®) can suppress TNF-α-induced inflammation, angiogenesis, and osteophyte formation using two cell models involved in OA: endothelial cells and monocytes. Each plant extract was evaluated for its polyphenol content, antioxidant activity, and toxicity. In endothelial cells and monocytes, expression of genes involved in OA was assessed, functional assays for inflammation and angiogenesis were performed, and impairment of reactive oxygen species production (ROS) was evaluated. Exposure of cells to the bioactives alone and in combination before cytokine stimulation resulted in differential counterregulation of several gene and protein expressions, including those for cyclooxygenases-2, metalloproteinase-9, transforming growth factor ß1, and bone morphogenic protein-2. We demonstrated that these bioactives modulated monocyte adhesion to endothelial cells as well as cell migration and endothelial angiogenesis. Consistent with radical scavenging activity in the cell-free system, the bioactives curbed TNF-α-stimulated intracellular ROS production. We confirmed the potential anti-inflammatory and antiangiogenic effects of the combination of Harpagophytum procumbens, Boswellia, Curcuma, Bromelain, and Escin and provided new mechanistic evidence for their use in OA. However, further clinical studies are needed to evaluate the true clinical utility of these bioactives as supportive, preventive, and therapeutic agents.

5.
Nutrients ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807860

RESUMO

Pathogenetically characterized by the absence of celiac disease and wheat allergy, non-celiac gluten sensitivity (NCGS) is a clinical entity triggered by the consumption of gluten-containing foods that relieved by a gluten-free diet. Since it is very difficult to maintain a complete gluten-free diet, there is a high interest in discovering alternative strategies aimed at reducing gluten concentration or mitigating its toxic effects. Plant-based dietary models are usually rich in bioactive compounds, such as polyphenols, recognized to prevent, delay, or even reverse chronic diseases, including intestinal disorders. However, research on the role of polyphenols in mitigating the toxicity of gluten-containing foods is currently limited. We address the metabolic fate of dietary polyphenols, both as free and bound macromolecule-linked forms, with particular reference to the gastrointestinal compartment, where the concentration of polyphenols can reach high levels. We analyze the potential targets of polyphenols including the gluten peptide bioavailability, the dysfunction of the intestinal epithelial barrier, intestinal immune response, oxidative stress and inflammation, and dysbiosis. Overall, this review provides an updated overview of the effects of polyphenols as possible dietary strategies to counteract the toxic effects of gluten, potentially resulting in the improved quality of life of patients with gluten-related disorders.


Assuntos
Doença Celíaca , Polifenóis , Dieta Livre de Glúten , Glutens/efeitos adversos , Humanos , Qualidade de Vida
6.
Front Oncol ; 12: 836630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223518

RESUMO

Gynecological cancer management remains challenging and a better understanding of molecular mechanisms that lead to carcinogenesis and development of these diseases is needed to improve the therapeutic approaches. The Na+/H+ exchanger regulatory factor 1 (NHERF1) is a scaffold protein that contains modular protein-interaction domains able to interact with molecules with an impact on carcinogenesis and cancer progression. During recent years, its involvement in gynecological cancers has been explored, suggesting that NHERF1 could be a potential biomarker for the development of new targeted therapies suitable to the management of these tumors. This comprehensive review provides an update on the recent study on NHERF1 activity and its pathological role in cervical and ovarian cancer, as well as on its probable involvement in the therapeutic landscape of these cancer types.

7.
Nutrients ; 13(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34836245

RESUMO

Hydroxytyrosol (HT), a peculiar olive and olive oil phenolic antioxidant, plays a significant role in the endothelial and cardiovascular protection associated with olive oil consumption. However, studies examining the effects of HT on the whole-genome expression of endothelial cells, which are prominent targets for vasculo-protective effects of olive oil polyphenols, have been lacking. This study aims to comprehensively evaluate the genomic effects exerted by HT, at the transcriptional level, in endothelial cells under resting or proinflammatory conditions. Human umbilical vein endothelial cells (HUVECs) were treated with 10 µmol/L HT for 1 h and then stimulated with 5 ng/mL interleukin (IL)-1ß for 3 h. Total RNA was extracted, and gene expression profile assessed with microarray analysis. Functional enrichment analysis and pathway analysis were performed by Ingenuity Pathways Analysis. Microarray data were validated by qRT-PCR. Fixing a significance threshold at 1.5-fold change, HT affected the expression of 708 and 599 genes, respectively, in HUVECs under resting and IL-1ß-stimulated conditions; among these, 190 were common to both conditions. Unfolded protein response (UPR) and endoplasmic reticulum stress resulted from the two top canonical pathways common between HT and HT-IL-1ß affected genes. IL-17F/A signaling was found in the top canonical pathways of HT modified genes under resting unstimulated conditions, whereas cardiac hypertrophy signaling was identified among the pathways affected by HT-IL-1ß. The transcriptomic analysis allowed pinpointing immunological, inflammatory, proliferative, and metabolic-related pathways as the most affected by HT in endothelial cells. It also revealed previously unsuspected genes and related gene pathways affected by HT, thus broadening our knowledge of its biological properties. The unbiased identification of novel genes regulated by HT improves our understanding of mechanisms by which olive oil prevents or attenuates inflammatory diseases and identifies new genes to be enquired as potential contributors to the inter-individual variation in response to functional food consumption.


Assuntos
Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Nutrigenômica , Álcool Feniletílico/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ontologia Genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Álcool Feniletílico/farmacologia , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
8.
Metabolites ; 11(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34564382

RESUMO

Glycans play a fundamental role in several biological processes, such as cell-cell adhesion, signaling, and recognition. Similarly, abnormal glycosylation is involved in many pathological processes, among which include tumor growth and progression. Several highly glycosylated proteins found in blood are currently used in clinical practice as cancer biomarkers (e.g., CA125, PSA, and CA19-9). The development of novel non-invasive diagnostic procedures would greatly simplify the screening and discovery of pathologies at an early stage, thus also allowing for simpler treatment and a higher success rate. In this observational study carried out on 68 subjects diagnosed with either breast or lung cancer and 34 healthy volunteers, we hydrolyzed the glycoproteins in saliva and quantified the obtained free sugars (fucose, mannose, galactose, glucosamine, and galactosamine) by using high-performance anion-exchange chromatography with pulsed-amperometric detection (HPAEC-PAD). The glycosidic profiles were compared by using multivariate statistical analysis, showing differential glycosylation patterns among the three categories. Furthermore, Receiver Operating Characteristics (ROC) analysis allowed obtaining a reliable and minimally invasive protocol able to discriminate between healthy and pathological subjects.

9.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670800

RESUMO

Copper (Cu) dyshomeostasis plays a pivotal role in several neuropathologies, such as Parkinson's disease (PD). Metal accumulation in the central nervous system (CNS) could result in loss-of-function of proteins involved in Cu metabolism and redox cycling, generating reactive oxygen species (ROS). Moreover, neurodegenerative disorders imply the presence of an excess of misfolded proteins known to lead to neuronal damage. In PD, Cu accumulates in the brain, binds α-synuclein, and initiates its aggregation. We assessed the correlation between neuronal differentiation, Cu homeostasis regulation, and α-synuclein phosphorylation. At this purpose, we used differentiated SHSY5Y neuroblastoma cells to reproduce some of the characteristics of the dopaminergic neurons. Here, we reported that differentiated cells expressed a significantly higher amount of a copper transporter protein 1 (CTR1), increasing the copper uptake. Cells also showed a significantly more phosphorylated form of α-synuclein, further increased by copper treatment, without modifications in α-synuclein levels. This effect depended on the upregulation of the polo-like kinase 2 (PLK2), whereas the levels of the relative protein phosphatase 2A (PP2A) remained unvaried. No changes in the oxidative state of the cells were identified. The Cu dependent alteration of α-synuclein phosphorylation pattern might potentially offer new opportunities for clinical intervention.


Assuntos
Cobre/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , alfa-Sinucleína/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/farmacologia , Proteínas de Transporte de Cobre/genética , Proteínas de Transporte de Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
Int J Mol Sci ; 21(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806665

RESUMO

Microbial communities and human cells, through a dynamic crosstalk, maintain a mutualistic relationship that contributes to the maintenance of cellular metabolism and of the immune and neuronal systems. This dialogue normally occurs through the production and regulation of hormonal intermediates, metabolites, secondary metabolites, proteins, and toxins. When the balance between host and microbiota is compromised, the dynamics of this relationship change, creating favorable conditions for the development of diseases, including cancers. Microbiome metabolites can be important modulators of the tumor microenvironment contributing to regulate inflammation, proliferation, and cell death, in either a positive or negative way. Recent studies also highlight the involvement of microbiota metabolites in inducing epithelial-mesenchymal transition, thus favoring the setup of the metastatic niche. An investigation of microbe-derived metabolites in "liquid" human samples, such as plasma, serum, and urine, provide further information to clarify the relationship between host and microbiota.


Assuntos
Progressão da Doença , Metaboloma , Microbiota , Neoplasias/microbiologia , Neoplasias/patologia , Animais , Humanos , Metástase Neoplásica , Microambiente Tumoral
11.
Nucleic Acids Res ; 48(14): 7864-7882, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32324228

RESUMO

It has been recently shown that many proteins are lacking from reference databases used in mass spectrometry analysis, due to their translation templated on alternative open reading frames. This questions our current understanding of gene annotation and drastically expands the theoretical proteome complexity. The functions of these alternative proteins (AltProts) still remain largely unknown. We have developed a large-scale and unsupervised approach based on cross-linking mass spectrometry (XL-MS) followed by shotgun proteomics to gather information on the functional role of AltProts by mapping them back into known signalling pathways through the identification of their reference protein (RefProt) interactors. We have identified and profiled AltProts in a cancer cell reprogramming system: NCH82 human glioma cells after 0, 16, 24 and 48 h Forskolin stimulation. Forskolin is a protein kinase A activator inducing cell differentiation and epithelial-mesenchymal transition. Our data show that AltMAP2, AltTRNAU1AP and AltEPHA5 interactions with tropomyosin 4 are downregulated under Forskolin treatment. In a wider perspective, Gene Ontology and pathway enrichment analysis (STRING) revealed that RefProts associated with AltProts are enriched in cellular mobility and transfer RNA regulation. This study strongly suggests novel roles of AltProts in multiple essential cellular functions and supports the importance of considering them in future biological studies.


Assuntos
Reprogramação Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mapeamento de Interação de Proteínas , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Colforsina/farmacologia , Ativação Enzimática , Humanos , Espectrometria de Massas , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteômica , Proteínas de Ligação a RNA/metabolismo , Receptor EphA5/metabolismo , Transdução de Sinais , Tropomiosina/metabolismo
12.
Curr Pharm Des ; 26(3): 372-375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31995001

RESUMO

BACKGROUND: Molecular changes associated with the initiation of the epithelial to mesenchymal transition (EMT) program involve alterations of large proteome-based networks. The role of protein products mapping to non-coding genomic regions is still unexplored. OBJECTIVE: The goal of this study was the identification of an alternative protein signature in breast cancer cellular models with a distinct expression of EMT markers. METHODS: We profiled MCF-7 and MDA-MB-231 cells using liquid-chromatography mass/spectrometry (LCMS/ MS) and interrogated the OpenProt database to identify novel predicted isoforms and novel predicted proteins from alternative open reading frames (AltProts). RESULTS: Our analysis revealed an AltProt and isoform protein signature capable of classifying the two breast cancer cell lines. Among the most highly expressed alternative proteins, we observed proteins potentially associated with inflammation, metabolism and EMT. CONCLUSION: Here, we present an AltProts signature associated with EMT. Further studies will be needed to define their role in cancer progression.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Proteoma , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Humanos , Células MCF-7
13.
Int J Mol Sci ; 21(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979064

RESUMO

Members of the carbonic anhydrase family are functionally involved in the regulation of intracellular and extracellular pH in physiological and pathological conditions. Their expression is finely regulated to maintain a strict control on cellular homeostasis, and it is dependent on the activation of extracellular and intracellular signaling pathways. Combining RNA sequencing (RNA-seq), NanoString, and bioinformatics data, we demonstrated that the expression of carbonic anhydrase 12 (CAXII) is significantly different in luminal and triple negative breast cancer (BC) models and patients, and is associated with the activation of an epithelial mesenchymal transition (EMT) program. In BC models, the phorbol ester 12-myristate 13-acetate (PMA)-mediated activation of protein kinase C (PKC) induced a down-regulation of CAXII with a concomitant modulation of other members of the transport metabolon, including CAIX and the sodium bicarbonate cotransporter 3 (NBCn1). This is associated with a remodeling of tumor glycolytic metabolism induced after PKC activation. Overall, this analysis highlights the dynamic nature of transport metabolom and identifies signaling pathways finely regulating this plasticity.


Assuntos
Anidrases Carbônicas/genética , Transição Epitelial-Mesenquimal/genética , Proteína Quinase C/genética , Adulto , Idoso , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Transdução de Sinais/genética , Simportadores de Sódio-Bicarbonato/genética , Neoplasias de Mama Triplo Negativas/genética
14.
Acta Biomater ; 103: 153-164, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843716

RESUMO

Mechanical cues sensed by tumor cells in their microenvironment can influence important mechanisms including adhesion, invasion and proliferation. However, a common mechanosensitive protein and/or pathway can be regulated in different ways among diverse types of tumors. Of particular interest are human breast epithelial cancers, which markedly exhibit a heterogeneous pattern of nuclear ß-catenin localization, a protein known to be involved in both mechanotransduction and tumorigenesis. ß-catenin can be aberrantly accumulated in the nucleus wherein it binds to and activates lymphoid enhancer factor/T cell factor (LEF/TCF) transcription factors. At present, little is known about how mechanical cues are integrated into breast cancer cells harboring impaired mechanisms of ß-catenin's nuclear uptake and/or retention. This prompted us to investigate the influence of mechanical cues on MCF-7 human breast cancer cells which are known to fail in relocating ß-catenin into the nucleus due to very low baseline levels of LEF/TCFs. Exploiting three-dimensional (3D) microscaffolds realized by two-photon lithography, we show that surrounding MCF-7 cells have not only a nuclear pool of ß-catenin, but also rescue from their defective expression of TCF4 and boost invasiveness. Together with heightened amounts of vimentin, a ß-catenin/TCF-target gene regulator of proliferation and invasiveness, such 3D-elicited changes indicate an epithelial-to-mesenchymal phenotypic switch of MCF-7 cells. This is also consistent with an increased in situ MCF-7 cell proliferation that can be abrogated by blocking ß-catenin/TCF-transcription activity. Collectively, these data suggest that 3D microenvironments are per se sufficient to prime a TCF4-dependent rescuing of ß-catenin nuclear activity in MCF-7 cells. The employed methodology could, therefore, provide a mechanism-based rationale to dissect further aspects of mechanotranscription in breast cancerogenesis, somewhat independent of ß-catenin's nuclear accumulation. More importantly, by considering the heterogeneity of ß-catenin signaling pathway in breast cancer patients, these data may open alternative avenues for personalized disease management and prevention. STATEMENT OF SIGNIFICANCE: Mechanical cues play a critical role in cancer pathogenesis. Little is known about their influence in breast cancer cells harboring impaired mechanisms of ß-catenin's nuclear uptake and/or retention, involved in both mechanotransduction and tumorigenesis. We engineered 3D scaffold, by two-photon lithography, to study the influence of mechanical cues on MCF-7 cells which are known to fail in relocating ß-catenin into the nucleus. We found that 3D microenvironments are per se sufficient to prime a TCF4-dependent rescuing of ß-catenin nuclear activity that boost cell proliferation and invasiveness. Thus, let us suggest that our system could provide a mechanism-based rationale to further dissect key aspects of mechanotranscription in breast cancerogenesis and progression, somewhat independent of ß-catenin's nuclear accumulation.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Microambiente Tumoral , beta Catenina/metabolismo , Caderinas/metabolismo , Comunicação Celular , Membrana Celular/metabolismo , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica , Proteína 2 Semelhante ao Fator 7 de Transcrição , Vimentina/metabolismo
15.
J Oncol ; 2019: 1253727, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772577

RESUMO

With the advent of novel molecular platforms for high-throughput/next-generation sequencing, the communities of commensal and pathogenic microorganisms that inhabit the human body have been defined in depth. In the last decade, the role of microbiota-host interactions in driving human cancer plasticity and malignant progression has been well documented. Germ-free preclinical models provided an invaluable tool to demonstrate that the human microbiota can confer susceptibility to various types of cancer and can also modulate the host response to therapeutic treatments. Of interest, besides the detrimental effects of dysbiosis on cancer etiopathogenesis, specific microorganisms have been shown to exert protective activities against cancer growth. This has strong clinical implications, as restoration of the physiologic microbiota is being rapidly implemented as a novel anticancer therapeutic strategy. Here, we reviewed past and recent literature depicting the role of microbiota-host interactions in modulating key molecular mechanisms that drive human cancer plasticity and lead to malignant progression. We analyzed microbiota-host interactions occurring in the gut as well as in other anatomic sites, such as oral and nasal cavities, lungs, breast, esophagus, stomach, reproductive tract, and skin. We revealed a common ground of biological alterations and pathways modulated by a dysbiotic microbiota and potentially involved in the control of cancer progression. The molecular mechanisms most frequently affected by the pathogenic microorganisms to induce malignant progression involve epithelial-mesenchymal transition- (EMT-) dependent barrier alterations and tumor-promoting inflammation. This evidence may pave the way to better stratify high-risk cancer patients based on unique microenvironmental/microbial signatures and to develop novel, personalized, biological therapies.

16.
FEBS J ; 286(4): 688-709, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30657636

RESUMO

Mitochondrial dysfunction is a key feature of cancer and is frequently associated with increased aggressiveness and metastatic potential. Recent evidence has brought to light a metabolic rewiring that takes place during the epithelial-to-mesenchymal transition (EMT), a process that drives the invasive capability of malignant tumors, and highlights a mechanistic link between mitochondrial dysfunction and EMT that has been only partially investigated. In this study, we characterized mitochondrial function and bioenergetic status of cultured human breast cancer cell lines, including luminal-like and basal-like subtypes. Through a combination of biochemical and functional studies, we demonstrated that basal-like cell lines exhibit impaired, but not completely inactive, mitochondrial function, and rely on a consequent metabolic switch to glycolysis to support their ATP demand. These altered metabolic activities are linked to modifications of key electron transport chain proteins and a significant increase in levels of reactive oxygen species compared to luminal cells. Furthermore, we observed that the stable knockdown of EMT markers caused functional changes in mitochondria that result in acquisition of a hybrid glycolysis/OXPHOS phenotype in cancer cells as a means to sustain their metabolic demand.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , Reprogramação Celular , Metabolismo Energético , Transição Epitelial-Mesenquimal , Mitocôndrias/patologia , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/classificação , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/metabolismo , Feminino , Glicólise , Humanos , Mitocôndrias/metabolismo , Oxirredução , Consumo de Oxigênio , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
17.
Am J Physiol Cell Physiol ; 316(2): C235-C245, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30485136

RESUMO

Carnosine (CAR) is an endogenous dipeptide physiologically present in excitable tissues, such as central nervous system (CNS) and muscle. CAR is acknowledged as a substrate involved in many homeostatic pathways and mechanisms and, due to its biochemical properties, as a molecule intertwined with the homeostasis of heavy metals such as copper (Cu). In CNS, Cu excess and dysregulation imply oxidative stress, free-radical production, and functional impairment leading to neurodegeneration. Here, we report that CAR intercepts the regulatory routes of Cu homeostasis in nervous cells and tissues. Specifically, in a murine neuron-derived cell model, i.e., the B104 neuroblastoma cells, extracellular CAR exposure up to 24 h influenced intracellular Cu entry and affected (downregulated) the key Cu-sensing system, consisting of the gene coding for the Slc31a1 transmembrane Cu importer (alias Ctr1), and the gene coding for the Cu-responsive transcription factor Sp1 ( Sp1). Also, CAR exposure upregulated CAR biosynthesis ( Carns1), extracellular degradation ( Cndp1), and transport ( Slc15a4, alias Pht1) genes and elicited CAR intracellular accumulation, contributing to the outline of functional association between CAR and Cu within the cell. Interestingly, the same gene modulation scheme acting in vitro operates in vivo in brains of mice undergoing dietary administration of CAR in drinking water for 2 wk. Overall, our findings describe for the first time a regulatory interaction between CAR and Cu pathways in CNS and indicate CAR as a novel active molecule within the network of ligands and chaperones that physiologically regulate Cu homeostasis.


Assuntos
Encéfalo/metabolismo , Carnosina/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Células Cultivadas , Transportador de Cobre 1 , Relação Dose-Resposta a Droga , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
18.
Semin Cancer Biol ; 58: 1-10, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30453041

RESUMO

The epithelial mesenchymal transition (EMT) program is defined as a cellular transition from an epithelial to a mesenchymal state. This process occurs to provide the cell with new phenotypic assets and new skills to perform complex processes. EMT is regulated at multilayer levels, including transcriptional control of gene expression, regulation of RNA splicing, and translational/post-translational control. Although transcriptional regulation by EMT-inducing transcription factors (EMT-TFs), including Zeb, Snail and Slug members, is generally considered the master step in this process, emerging data indicate that all these regulatory networks may have a role in the control of EMT. There is a sort of parallelism between the biological and still unrevealed EMT complexity and the cosmological hypothesis that sustains the universe may exist as a multiverse. The presence of different EMT transition states together with the occurrence of multiple layers of regulation support the idea that EMT is just one on many out there. Is the activation of a single layer of regulation sufficient to initiate the whole EMT program? Can we postulate the activation of different EMT "dimensions"? If we think about these layers as multiple separate "universes", various scenarios can be revealed.


Assuntos
Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Animais , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fatores de Transcrição/genética , Transcrição Gênica/genética
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 344-357, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578966

RESUMO

Several studies have identified a specific metabolic program that is associated with the process of epithelial-mesenchymal transition (EMT). Whereas much is known about the association between glucose metabolism and EMT, the contribution of lipid metabolism is not still completely understood. Here, we studied epithelial and mesenchymal breast cancer cells by proteomic and lipidomic approaches and identified significant differences that characterised these models concerning specific metabolic enzymes and metabolites including fatty acids and phospholipids. Higher levels of monounsaturated fatty acids together with increased expression of enzymes of de novo fatty acid synthesis is the distinct signature of epithelial with respect to mesenchymal cells that, on the contrary, show reduced lipogenesis, higher polyunsaturated fatty acids level and increased expression of genes involved in the triacylglycerol (TAG) synthesis and lipid droplets formation. In the mesenchymal model, the diacylglycerol acyltransferase (DGAT)-1 appears to be the major enzyme involved in TAG synthesis and inhibition of DGAT1, but not DGAT2, drastically reduces the incorporation of labeled palmitate into TAG. Moreover, knockdown of ß-catenin demonstrated that this metabolic phenotype in under the control of a network of transcriptional factors and that ß-catenin has a specific role in the regulation of lipid metabolism in mesenchymal cells.


Assuntos
Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Metabolismo dos Lipídeos/fisiologia , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Metabolismo dos Lipídeos/genética , Lipogênese , Metaboloma , Fosfolipídeos , Proteômica , Transcriptoma/genética , Transcriptoma/fisiologia , Triglicerídeos/metabolismo , beta Catenina/metabolismo , beta Catenina/fisiologia
20.
Nanomedicine ; 14(7): 1963-1971, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902526

RESUMO

Protein biomarkers are important diagnostic tools for cancer and several other diseases. To be validated in a clinical context, a biomarker should satisfy some requirements including the ability to provide reliable information on a pathological state by measuring its expression levels. In parallel, the development of an approach capable of detecting biomarkers with high sensitivity and specificity would be ideally suited for clinical applications. Here, we performed an immune-based label free assay using Surface Plasmon Resonance (SPR)-based detection of the soluble form of E-cadherin, a cell-cell contact protein that is involved in the maintaining of tissue integrity. With this approach, we obtained a specific and quantitative detection of E-cadherin from a few hundred microliters of serum of breast cancer patients by obtaining a 10-fold enhancement in the detection limit over a traditional colorimetric ELISA.


Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Técnicas Biossensoriais , Neoplasias da Mama/diagnóstico , Caderinas/metabolismo , Imunoensaio , Ressonância de Plasmônio de Superfície , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Limite de Detecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA