Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1842, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418456

RESUMO

Human papillomavirus (HPV) is a significant contributor to the global cancer burden, and its carcinogenic activity is facilitated in part by the HPV early protein 6 (E6), which interacts with the E3-ligase E6AP, also known as UBE3A, to promote degradation of the tumor suppressor, p53. In this study, we present a single-particle cryoEM structure of the full-length E6AP protein in complex with HPV16 E6 (16E6) and p53, determined at a resolution of ~3.3 Å. Our structure reveals extensive protein-protein interactions between 16E6 and E6AP, explaining their picomolar binding affinity. These findings shed light on the molecular basis of the ternary complex, which has been pursued as a potential therapeutic target for HPV-driven cervical, anal, and oropharyngeal cancers over the last two decades. Understanding the structural and mechanistic underpinnings of this complex is crucial for developing effective therapies to combat HPV-induced cancers. Our findings may help to explain why previous attempts to disrupt this complex have failed to generate therapeutic modalities and suggest that current strategies should be reevaluated.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Proteína Supressora de Tumor p53/metabolismo , Papillomavirus Humano 16/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Oncogênicas Virais/genética , Genes Supressores de Tumor
2.
Chem Sci ; 14(44): 12484-12497, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020382

RESUMO

Human papillomavirus (HPV) infections account for nearly all cervical cancer cases, which is the fourth most common cancer in women worldwide. High-risk variants, including HPV16, drive tumorigenesis in part by promoting the degradation of the tumor suppressor p53. This degradation is mediated by the HPV early protein 6 (E6), which recruits the E3 ubiquitin ligase E6AP and redirects its activity towards ubiquitinating p53. Targeting the protein interaction interface between HPV E6 and E6AP is a promising modality to mitigate HPV-mediated degradation of p53. In this study, we designed a covalent peptide inhibitor, termed reactide, that mimics the E6AP LXXLL binding motif by selectively targeting cysteine 58 in HPV16 E6 with quantitative conversion. This reactide provides a starting point in the development of covalent peptidomimetic inhibitors for intervention against HPV-driven cancers.

3.
Nat Commun ; 13(1): 5500, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127359

RESUMO

Insulin-like growth factor (IGF) signaling is highly conserved and tightly regulated by proteases including Pregnancy-Associated Plasma Protein A (PAPP-A). PAPP-A and its paralog PAPP-A2 are metalloproteases that mediate IGF bioavailability through cleavage of IGF binding proteins (IGFBPs). Here, we present single-particle cryo-EM structures of the catalytically inactive mutant PAPP-A (E483A) in complex with a peptide from its substrate IGFBP5 (PAPP-ABP5) and also in its substrate-free form, by leveraging the power of AlphaFold to generate a high quality predicted model as a starting template. We show that PAPP-A is a flexible trans-dimer that binds IGFBP5 via a 25-amino acid anchor peptide which extends into the metalloprotease active site. This unique IGFBP5 anchor peptide that mediates the specific PAPP-A-IGFBP5 interaction is not found in other PAPP-A substrates. Additionally, we illustrate the critical role of the PAPP-A central domain as it mediates both IGFBP5 recognition and trans-dimerization. We further demonstrate that PAPP-A trans-dimer formation and distal inter-domain interactions are both required for efficient proteolysis of IGFBP4, but dispensable for IGFBP5 cleavage. Together the structural and biochemical studies reveal the mechanism of PAPP-A substrate binding and selectivity.


Assuntos
Proteína Plasmática A Associada à Gravidez , Somatomedinas , Aminoácidos/metabolismo , Peptídeos/metabolismo , Proteína Plasmática A Associada à Gravidez/química , Proteína Plasmática A Associada à Gravidez/metabolismo , Ligação Proteica , Somatomedinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(18): e2110085119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35452328

RESUMO

G protein­coupled receptors (GPCRs) activate cellular responses ranging from odorants to neurotransmitters. Binding an agonist leads to activation of a heterotrimeric G protein (GP) that stimulates external signaling. Unfortunately, the mechanism remains unknown. We show for 15 class A GPCRs, including opioids, adrenergics, adenosines, chemokines, muscarinics, cannabinoids, serotonins, and dopamines, that interaction of an inactive GP, including Gs, Gi, Go, G11, and Gq, to the inactive GPCR, containing the intracellular ionic lock between transmembrane (TM) helices 3 and 6, evolves exothermically to form a precoupled GPCR-GP complex with an opened TM3-TM6 and the GP-α5 helix partially inserted into the GPCR but not activated. We show that binding of agonist to this precoupled GPCR-GP complex causes the Gα protein to open into its active form, with the guanosine diphosphate exposed for signaling. This GP-first paradigm provides a strategy for developing selective agonists for GPCRs since it is the pharmacophore for the precoupled GPCR-GP complex that should be used to design drugs.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Membrana Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo
5.
Cell Mol Life Sci ; 79(1): 24, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34966948

RESUMO

Protecting neurons from death during oxidative and neuroexcitotoxic stress is key for preventing cognitive dysfunction. We uncovered a novel neuroprotective mechanism involving interaction between neurotrophic factor-α1 (NF-α1/carboxypeptidase E, CPE) and human 5-HTR1E, a G protein-coupled serotonin receptor with no previously known neurological function. Co-immunoprecipitation and pull-down assays confirmed interaction between NFα1/CPE and 5-HTR1E and 125I NF-α1/CPE-binding studies demonstrated saturable, high-affinity binding to 5-HTR1E in stably transfected HEK293 cells (Kd = 13.82 nM). Treatment of 5-HTR1E stable cells with NF-α1/CPE increased pERK 1/2 and pCREB levels which prevented a decrease in pro-survival protein, BCL2, during H2O2-induced oxidative stress. Cell survival assay in ß-arrestin Knockout HEK293 cells showed that the NF-α1/CPE-5-HTR1E-mediated protection against oxidative stress was ß-arrestin-dependent. Molecular dynamics studies revealed that NF-α1/CPE interacts with 5-HTR1E via 3 salt bridges, stabilized by several hydrogen bonds, independent of the serotonin pocket. Furthermore, after phosphorylating the C-terminal tail and intracellular loop 3 (ICL3) of NF-α1/CPE-5-HTR1E, it recruited ß-arrestin1 by forming numerous salt bridges and hydrogen bonds to ICL2 and ICL3, leading to activation of ß-arrestin1. Immunofluorescence studies showed 5-HTR1E and NF-α1/CPE are highly expressed and co-localized on cell surface of human hippocampal neurons. Importantly, knock-down of 5-HTR1E in human primary neurons diminished the NF-α1/CPE-mediated protection of these neurons against oxidative stress and glutamate neurotoxicity-induced cell death. Thus, NF-α1/CPE uniquely interacts with serotonin receptor 5-HTR1E to activate the ß-arrestin/ERK/CREB/BCL2 pathway to mediate stress-induced neuroprotection.


Assuntos
Carboxipeptidase H/metabolismo , Sistema de Sinalização das MAP Quinases , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Neurotoxinas/toxicidade , Estresse Oxidativo , Receptores de Serotonina/metabolismo , beta-Arrestinas/metabolismo , Animais , Carboxipeptidase H/química , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células HEK293 , Hipocampo/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Receptores de Serotonina/química
6.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34857633

RESUMO

G protein-coupled receptors display multifunctional signaling, offering the potential for agonist structures to promote conformational selectivity for biased outputs. For ß2-adrenergic receptors (ß2AR), unbiased agonists stabilize conformation(s) that evoke coupling to Gαs (cyclic adenosine monophosphate [cAMP] production/human airway smooth muscle [HASM] cell relaxation) and ß-arrestin engagement, the latter acting to quench Gαs signaling, contributing to receptor desensitization/tachyphylaxis. We screened a 40-million-compound scaffold ranking library, revealing unanticipated agonists with dihydroimidazolyl-butyl-cyclic urea scaffolds. The S-stereoisomer of compound C1 shows no detectable ß-arrestin engagement/signaling by four methods. However, C1-S retained Gαs signaling-a divergence of the outputs favorable for treating asthma. Functional studies with two models confirmed the biasing: ß2AR-mediated cAMP signaling underwent desensitization to the unbiased agonist albuterol but not to C1-S, and desensitization of HASM cell relaxation was observed with albuterol but not with C1-S These HASM results indicate biologically pertinent biasing of C1-S, in the context of the relevant physiologic response, in the human cell type of interest. Thus, C1-S was apparently strongly biased away from ß-arrestin, in contrast to albuterol and C5-S C1-S structural modeling and simulations revealed binding differences compared with unbiased epinephrine at transmembrane (TM) segments 3,5,6,7 and ECL2. C1-S (R2 = cyclohexane) was repositioned in the pocket such that it lost a TM6 interaction and gained a TM7 interaction compared with the analogous unbiased C5-S (R2 = benzene group), which appears to contribute to C1-S biasing away from ß-arrestin. Thus, an agnostic large chemical-space library identified agonists with receptor interactions that resulted in relevant signal splitting of ß2AR actions favorable for treating obstructive lung disease.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 2/química , Animais , Linhagem Celular , Simulação por Computador , Cricetinae , Descoberta de Drogas , Epinefrina/química , Epinefrina/farmacologia , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Músculo Liso/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Sistema Respiratório , Bibliotecas de Moléculas Pequenas
7.
Nat Chem Biol ; 17(12): 1271-1280, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34799735

RESUMO

Oxysterols (OHCs) are hydroxylated cholesterol metabolites that play ubiquitous roles in health and disease. Due to the non-covalent nature of their interactions and their unique partitioning in membranes, the analysis of live-cell, proteome-wide interactions of OHCs remains an unmet challenge. Here, we present a structurally precise chemoproteomics probe for the biologically active molecule 20(S)-hydroxycholesterol (20(S)-OHC) and provide a map of its proteome-wide targets in the membranes of living cells. Our target catalog consolidates diverse OHC ontologies and demonstrates that OHC-interacting proteins cluster with specific processes in immune response and cancer. Competition experiments reveal that 20(S)-OHC is a chemo-, regio- and stereoselective ligand for the protein transmembrane protein 97 (Tmem97/the σ2 receptor), enabling us to reconstruct the 20(S)-OHC-Tmem97 binding site. Our results demonstrate that multiplexed, quantitative analysis of cellular target engagement can expose new dimensions of metabolite activity and identify actionable targets for molecular therapy.


Assuntos
Hidroxicolesteróis/química , Proteoma/química , Células 3T3 , Animais , Comunicação Celular , Membrana Celular/metabolismo , Química Click , Diazometano/química , Células HEK293 , Humanos , Ligantes , Camundongos , Compostos de Piridínio/química , Estreptavidina/química
8.
PLoS One ; 16(2): e0246814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630857

RESUMO

During formation of the Hedgehog (Hh) signaling proteins, cooperative activities of the Hedgehog INTein (Hint) fold and Sterol Recognition Region (SRR) couple autoproteolysis to cholesterol ligation. The cholesteroylated Hh morphogens play essential roles in embryogenesis, tissue regeneration, and tumorigenesis. Despite the centrality of cholesterol in Hh function, the full structure of the Hint-SRR ("Hog") domain that attaches cholesterol to the last residue of the active Hh morphogen remains enigmatic. In this work, we combine molecular dynamics simulations, photoaffinity crosslinking, and mutagenesis assays to model cholesterolysis intermediates in the human Sonic Hedgehog (hSHH) protein. Our results provide evidence for a hydrophobic Hint-SRR interface that forms a dynamic, non-covalent cholesterol-Hog complex. Using these models, we suggest a unified mechanism by which Hh proteins can recruit, sequester, and orient cholesterol, and offer a molecular basis for the effects of disease-causing hSHH mutations.


Assuntos
Colesterol/química , Proteínas Hedgehog/química , Simulação de Dinâmica Molecular , Animais , Colesterol/genética , Colesterol/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Domínios Proteicos
9.
Biomacromolecules ; 19(4): 1358-1367, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29539260

RESUMO

Inorganic polyphosphate (polyP) released by human platelets has recently been shown to activate blood clotting and identified as a potential target for the development of novel antithrombotics. Recent studies have shown that polymers with cationic binding groups (CBGs) inhibit polyP and attenuate thrombosis. However, a good molecular-level understanding of the binding mechanism is lacking for further drug development. While molecular dynamics (MD) simulation can provide molecule-level information, the time scale required to simulate these large biomacromolecules makes classical MD simulation impractical. To overcome this challenge, we employed metadynamics simulations with both all-atom and coarse-grained force fields. The force field parameters for polyethylene glycol (PEG) conjugated CBGs and polyP were developed to carry out coarse-grained MD simulations, which enabled simulations of these large biomacromolecules in a reasonable time scale. We found that the length of the PEG tail does not impact the interaction between the (PEG) n-CBG and polyP. As expected, increasing the number of the charged tertiary amine groups in the head group strengthens its binding to polyP. Our simulation shows that (PEG) n-CBG initially form aggregates, mostly with the PEG in the core and the hydrophilic CBG groups pointing toward water; then the aggregates approach the polyP and sandwich the polyP to form a complex. We found that the binding of (PEG) n-CBG remains intact against various lengths of polyP. Binding thermodynamics for two of the (PEG) n-CBG/polyP systems simulated were measured by isothermal titration calorimetry to confirm the key finding of the simulations that the length PEG tail does not influence ligand binding to polyP.


Assuntos
Simulação de Dinâmica Molecular , Polietilenoglicóis/química , Polímeros/química , Polifosfatos/química , Fenômenos Biofísicos , Plaquetas/química , Calorimetria , Cátions/química , Humanos , Polifosfatos/antagonistas & inibidores , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA