Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J. inborn errors metab. screen ; 8: e20200003, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1135001

RESUMO

Abstract Mucopolysaccharidoses (MPS) are inborn errors of metabolism caused by deficient lysosomal enzymes, leading to organomegaly, hip osteonecrosis, coarse facial features, bone deformities, joint stiffness, cardiac and pulmonary symptoms (MPS VI) or hypermobility (MPS IVA). Some patients may present with non-classical forms of the disease in which osteoarticular abnormalities are the initial symptoms of non-classical forms. As orthopedists and surgeons are the specialists most frequently consulted before the diagnosis, it is critical that MPS may be considered as a differential diagnosis for patients with bone dysplasia. Experts in Latin America reviewed medical records focusing on disease onset, first symptoms and the follow-up clinical and surgical outcomes of non-classical MPS VI and IVA patients. All patients displayed orthopedic issues, which worsened over time, followed by cardiac and ophthalmological abnormalities. Our findings enlighten the necessity of including non-classical MPS as possible diagnosis for patients who report osteoarticular abnormalities in absence of inflammation.

2.
Mol Genet Metab Rep ; 12: 62-68, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28649514

RESUMO

Mucopolysaccharidosis type II (MPS II - Hunter syndrome) is an X-linked lysosomal storage disorder caused by a deficiency in the enzyme iduronate-2 sulfatase (I2S), leading to the accumulation of the glycosaminoglycans, affecting multiple organs and systems. Enzyme replacement therapy does not cross the blood brain barrier, limiting results in neurological forms of the disease. Another option of treatment for severe MPS, hematopoietic stem cell transplantation (HSCT) has become the treatment of choice for the severe form of MPS type I, since it can preserve neurocognition when performed early in the course of the disease. To date, only few studies have examined the long-term outcomes of HSCT in patients with MPS II. We describe the seven-year follow-up of a prenatally diagnosed MPS II boy with positive family history of severe MPS form, submitted to HSCT with umbilical cord blood cells at 70 days of age. Engraftment after 30 days revealed mixed chimerism with 79% donor cells; after 7 years engraftment remains at 80%. I2S activity 30 days post-transplant was low in plasma and normal in leukocytes and the same pattern is observed to date. At age 7 years growth charts are normal and he is very healthy, although mild signs of dysostosis multiplex are present, as well as hearing loss. The neuropsychological evaluation (Wechsler Intelligence Scale for Children - Fourth Edition - WISC-IV), disclosed an IQ of 47. Despite this low measured IQ, the patient continues to show improvements in cognitive, language and motor skills, being quite functional. We believe that HSCT is a therapeutic option for MPS II patients with the severe phenotype, as it could preserve neurocognition or even halt neurodegeneration, provided strict selection criteria are followed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA