Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7320, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355284

RESUMO

Aluminum (Al) toxicity on acid soils adversely affects maize yields, which can be overcome by combining soil amendments with genetic tolerance. In maize, ZmMATE1 confers Al tolerance via Al-activated citrate release, whereby citrate forms non-toxic complexes with Al3+ in the rhizosphere. Here, we investigated Al tolerance mechanisms in maize germplasm originated from Kenya based on quantitative trait loci (QTL) mapping. Five QTLs and four epistatic interactions explained ~51% of the phenotypic variation for Al tolerance. The lack of Al tolerance QTL on chromosome 6 and the much lower expression of ZmMATE1 in both Kenyan lines than in Cateto Al237, which donates the superior allele of ZmMATE1, strongly indicate that this gene does not play a significant role in Al tolerance in neither parent. In turn, maize homologs to genes previously implicated in Al tolerance in other species, ZmNrat1, ZmMATE3, ZmWRKY and ZmART1, co-localized with Al tolerance QTL and were more highly expressed in the parent that donate favorable QTL alleles. However, these candidate genes will require further studies for functional validation on maize Al tolerance. The existence of Al tolerance mechanisms independent from ZmMATE1 suggests it is possible to develop highly Al tolerant cultivars by pyramiding complementary Al tolerance genes in maize.


Assuntos
Alumínio/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Zea mays/efeitos dos fármacos , Alelos , Mapeamento Cromossômico , Epistasia Genética , Perfilação da Expressão Gênica , Ligação Genética , Genótipo , Quênia , Modelos Genéticos , Fenótipo , Raízes de Plantas/metabolismo , Locos de Características Quantitativas , Rizosfera , Zea mays/genética , Zea mays/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(1): 313-318, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30545913

RESUMO

Acidic soils, where aluminum (Al) toxicity is a major agricultural constraint, are globally widespread and are prevalent in developing countries. In sorghum, the root citrate transporter SbMATE confers Al tolerance by protecting root apices from toxic Al3+, but can exhibit reduced expression when introgressed into different lines. We show that allele-specific SbMATE transactivation occurs and is caused by factors located away from SbMATE Using expression-QTL mapping and expression genome-wide association mapping, we establish that SbMATE transcription is controlled in a bipartite fashion, primarily in cis but also in trans Multiallelic promoter transactivation and ChIP analyses demonstrated that intermolecular effects on SbMATE expression arise from a WRKY and a zinc finger-DHHC transcription factor (TF) that bind to and trans-activate the SbMATE promoter. A haplotype analysis in sorghum RILs indicates that the TFs influence SbMATE expression and Al tolerance. Variation in SbMATE expression likely results from changes in tandemly repeated cis sequences flanking a transposable element (a miniature inverted repeat transposable element) insertion in the SbMATE promoter, which are recognized by the Al3+-responsive TFs. According to our model, repeat expansion in Al-tolerant genotypes increases TF recruitment and, hence, SbMATE expression, which is, in turn, lower in Al-sensitive genetic backgrounds as a result of lower TF expression and fewer binding sites. We thus show that even dominant cis regulation of an agronomically important gene can be subjected to precise intermolecular fine-tuning. These concerted cis/trans interactions, which allow the plant to sense and respond to environmental cues, such as Al3+ toxicity, can now be used to increase yields and food security on acidic soils.


Assuntos
Alumínio/toxicidade , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Proteínas de Transporte de Ânions/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Sorghum/genética , Sorghum/metabolismo , Sequências de Repetição em Tandem/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Front Plant Sci ; 9: 1420, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319678

RESUMO

Aluminum (Al) toxicity on acidic soils significantly damages plant roots and inhibits root growth. Hence, crops intoxicated by Al become more sensitive to drought stress and mineral nutrient deficiencies, particularly phosphorus (P) deficiency, which is highly unavailable on tropical soils. Advances in our understanding of the physiological and genetic mechanisms that govern plant Al resistance have led to the identification of Al resistance genes, both in model systems and in crop species. It has long been known that Al resistance has a beneficial effect on crop adaptation to acidic soils. This positive effect happens because the root systems of Al resistant plants show better development in the presence of soil ionic Al3+ and are, consequently, more efficient in absorbing sub-soil water and mineral nutrients. This effect of Al resistance on crop production, by itself, warrants intensified efforts to develop and implement, on a breeding scale, modern selection strategies to profit from the knowledge of the molecular determinants of plant Al resistance. Recent studies now suggest that Al resistance can exert pleiotropic effects on P acquisition, potentially expanding the role of Al resistance on crop adaptation to acidic soils. This appears to occur via both organic acid (OA)- and non-OA transporters governing a joint, iron-dependent interplay between Al resistance and enhanced P uptake, via changes in root system architecture. Current research suggests this interplay to be part of a P stress response, suggesting that this mechanism could have evolved in crop species to improve adaptation to acidic soils. Should this pleiotropism prove functional in crop species grown on acidic soils, molecular breeding based on Al resistance genes may have a much broader impact on crop performance than previously anticipated. To explore this possibility, here we review the components of this putative effect of Al resistance genes on P stress responses and P nutrition to provide the foundation necessary to discuss the recent evidence suggesting pleiotropy as a genetic linkage between Al resistance and P efficiency. We conclude by exploring what may be needed to enhance the utilization of Al resistance genes to improve crop production on acidic soils.

4.
Sci Rep ; 8(1): 10094, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973700

RESUMO

Root damage due to aluminum (Al) toxicity restricts crop production on acidic soils, which are extensive in the tropics. The sorghum root Al-activated citrate transporter, SbMATE, underlies the Al tolerance locus, AltSB, and increases grain yield under Al toxicity. Here, AltSB loci associated with Al tolerance were converted into Amplification Refractory Mutation System (ARMS) markers, which are cost effective and easy to use. A DNA pooling strategy allowed us to identify accessions harboring rare favorable AltSB alleles in three germplasm sets while greatly reducing genotyping needs. Population structure analysis revealed that favorable AltSB alleles are predominantly found in subpopulations enriched with guinea sorghums, supporting a possible Western African origin of AltSB. The efficiency of allele mining in recovering Al tolerance accessions was the highest in the largest and highly diverse germplasm set, with a 10-fold reduction in the number of accessions that would need to be phenotyped in the absence of marker information. Finally, Al tolerant accessions were found to rely on SbMATE to exclude Al3+ from sensitive sites in the root apex. This study emphasizes gene-specific markers as important tools for efficiently mining useful rare alleles in diverse germplasm, bridging genetic resource conservation efforts and pre-breeding for Al tolerance.


Assuntos
Proteínas de Transporte/genética , Variação Genética , Raízes de Plantas/efeitos dos fármacos , Sorghum/genética , Alelos , Alumínio/toxicidade , Cruzamento , Grão Comestível/efeitos dos fármacos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Marcadores Genéticos/genética , Mutação , Raízes de Plantas/genética , Locos de Características Quantitativas/genética , Sorghum/efeitos dos fármacos , Sorghum/crescimento & desenvolvimento
5.
Front Plant Sci ; 8: 865, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642761

RESUMO

Acidic soils are distributed worldwide, predominantly in tropical and subtropical areas, reaching around 50% of the arable soil. This type of soil strongly reduces crop production, mainly because of the presence of aluminum, which has its solubility increased at low pH levels. A well-known physiological mechanism used by plants to cope with Al stress involves activation of membrane transporters responsible for organic acid anions secretion from the root apex to the rhizosphere, which chelate Al, preventing its absorption by roots. In sorghum, a membrane transporter gene belonging to multidrug and toxic compound extrusion (MATE) family was identified and characterized as an aluminum-activated citrate transporter gene responsible for Al tolerance in this crop. Setaria viridis is an emerging model for C4 species and it is an important model to validate some genes for further C4 crops transformation, such as sugarcane, maize, and wheat. In the present work, Setaria viridis was used as a model plant to overexpress a newly identified MATE gene from Brachypodium distachyon (BdMATE), closely related to SbMATE, for aluminum tolerance assays. Transgenic S. viridis plants overexpressing a BdMATE presented an improved Al tolerance phenotype, characterized by sustained root growth and exclusion of aluminum from the root apex in transgenic plants, as confirmed by hematoxylin assay. In addition, transgenic plants showed higher root citrate exudation into the rhizosphere, suggesting that Al tolerance improvement in these plants could be related to the chelation of the metal by the organic acid anion. These results suggest that BdMATE gene can be used to transform C4 crops of economic importance with improved aluminum tolerance.

6.
Annu Rev Plant Biol ; 66: 571-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25621514

RESUMO

Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.


Assuntos
Adaptação Fisiológica , Alumínio/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Plantas/genética , Solo/química , Alumínio/toxicidade , Concentração de Íons de Hidrogênio , Proteínas de Plantas/metabolismo , Plantas/metabolismo
7.
BMC Plant Biol ; 14: 206, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25112843

RESUMO

BACKGROUND: Sorghum (Sorghum bicolor L. Moench) productivity is severely impeded by low phosphorus (P) and aluminum (Al) toxic soils in sub-Saharan Africa and especially West Africa (WA). Improving productivity of this staple crop under these harsh conditions is crucial to improve food security and farmer's incomes in WA. RESULTS: This is the first study to examine the genetics underlying sorghum adaptation to phosphorus limitation in a wide range of WA growing conditions. A set of 187 diverse sorghum genotypes were grown in 29 -P and + P field experiments from 2006-2012 in three WA countries. Sorghum grain yield performance under -P and + P conditions was highly correlated (r = 0.85***). Significant genotype-by-phosphorus interaction was detected but with small magnitude compared to the genotype variance component. We observed high genetic diversity within our panel, with rapid linkage disequilibrium decay, confirming recent sequence based studies in sorghum. Using genome wide association mapping based on 220 934 SNPs we identified one genomic region on chromosome 3 that was highly associated to grain yield production. A major Al-tolerance gene in sorghum, SbMATE, was collocated in this region and SbMATE specific SNPs showed very high associations to grain yield production, especially under -P conditions, explaining up to 16% of the genotypic variance. CONCLUSION: The results suggest that SbMATE has a possible pleiotropic role in providing tolerance to two of the most serious abiotic stresses for sorghum in WA, Al toxicity and P deficiency. The identified SNPs can help accelerate breeding for increased sorghum productivity under unfavorable soil conditions and contribute to assuring food security in WA.


Assuntos
Alumínio/metabolismo , Fósforo/metabolismo , Sementes/crescimento & desenvolvimento , Sorghum/genética , África Ocidental , Biomassa , Genoma de Planta , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Solo , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo
8.
PLoS One ; 9(1): e87438, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498106

RESUMO

Root damage caused by aluminum (Al) toxicity is a major cause of grain yield reduction on acid soils, which are prevalent in tropical and subtropical regions of the world where food security is most tenuous. In sorghum, Al tolerance is conferred by SbMATE, an Al-activated root citrate efflux transporter that underlies the major Al tolerance locus, AltSB, on sorghum chromosome 3. We used association mapping to gain insights into the origin and evolution of Al tolerance in sorghum and to detect functional variants amenable to allele mining applications. Linkage disequilibrium across the AltSB locus decreased much faster than in previous reports in sorghum, and reached basal levels at approximately 1000 bp. Accordingly, intra-locus recombination events were found to be extensive. SNPs and indels highly associated with Al tolerance showed a narrow frequency range, between 0.06 and 0.1, suggesting a rather recent origin of Al tolerance mutations within AltSB. A haplotype network analysis suggested a single geographic and racial origin of causative mutations in primordial guinea domesticates in West Africa. Al tolerance assessment in accessions harboring recombinant haplotypes suggests that causative polymorphisms are localized to a ∼6 kb region including intronic polymorphisms and a transposon (MITE) insertion, whose size variation has been shown to be positively correlated with Al tolerance. The SNP with the strongest association signal, located in the second SbMATE intron, recovers 9 of the 14 highly Al tolerant accessions and 80% of all the Al tolerant and intermediately tolerant accessions in the association panel. Our results also demonstrate the pivotal importance of knowledge on the origin and evolution of Al tolerance mutations in molecular breeding applications. Allele mining strategies based on associated loci are expected to lead to the efficient identification, in diverse sorghum germplasm, of Al tolerant accessions able maintain grain yields under Al toxicity.


Assuntos
Alumínio/efeitos adversos , Proteínas de Transporte/genética , Tolerância a Medicamentos/genética , Loci Gênicos/genética , Sorghum/genética , África Ocidental , Alelos , Mapeamento Cromossômico/métodos , Grão Comestível/genética , Haplótipos , Íntrons/genética , Desequilíbrio de Ligação/genética , Mutação/genética , Raízes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética
9.
Proc Natl Acad Sci U S A ; 110(13): 5241-6, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479633

RESUMO

Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world's potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments.


Assuntos
Alumínio/farmacologia , Proteínas de Transporte/biossíntese , Resistência a Medicamentos/fisiologia , Evolução Molecular , Dosagem de Genes , Proteínas de Plantas/biossíntese , Locos de Características Quantitativas , Zea mays/metabolismo , Proteínas de Transporte/genética , Resistência a Medicamentos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Zea mays/genética
10.
Plant J ; 73(2): 276-88, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22989115

RESUMO

Impaired root development caused by aluminum (Al) toxicity is a major cause of grain yield reduction in crops cultivated on acid soils, which are widespread worldwide. In sorghum, the major Al-tolerance locus, AltSB , is due to the function of SbMATE, which is an Al-activated root citrate transporter. Here we performed a molecular and physiological characterization of various AltSB donors and near-isogenic lines harboring various AltSB alleles. We observed a partial transfer of Al tolerance from the parents to the near-isogenic lines that was consistent across donor alleles, emphasizing the occurrence of strong genetic background effects related to AltSB . This reduction in tolerance was variable, with a 20% reduction being observed when highly Al-tolerant lines were the AltSB donors, and a reduction as great as 70% when other AltSB alleles were introgressed. This reduction in Al tolerance was closely correlated with a reduction in SbMATE expression in near-isogenic lines, suggesting incomplete transfer of loci acting in trans on SbMATE. Nevertheless, AltSB alleles from the highly Al-tolerant sources SC283 and SC566 were found to retain high SbMATE expression, presumably via elements present within or near the AltSB locus, resulting in significant transfer of the Al-tolerance phenotype to the derived near-isogenic lines. Allelic effects could not be explained by coding region polymorphisms, although occasional mutations may affect Al tolerance. Finally, we report on the extensive occurrence of alternative splicing for SbMATE, which may be an important component regulating SbMATE expression in sorghum by means of the nonsense-mediated RNA decay pathway.


Assuntos
Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Sorghum/efeitos dos fármacos , Sorghum/metabolismo , Processamento Alternativo , Sequência de Bases , Variação Genética , Genoma de Planta , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/genética , Conformação Proteica , Sorghum/genética
11.
PLoS One ; 6(6): e20830, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695088

RESUMO

BACKGROUND: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. METHODOLOGY: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. CONCLUSION/SIGNIFICANCE: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.


Assuntos
Alumínio/toxicidade , Biodiversidade , Sorghum/efeitos dos fármacos , Sorghum/fisiologia , Cruzamento , Evolução Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Repetições de Microssatélites/genética , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Solo , Sorghum/genética , Sorghum/crescimento & desenvolvimento
12.
Plant J ; 61(5): 728-40, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20003133

RESUMO

Crop yields are significantly reduced by aluminum (Al) toxicity on acidic soils, which comprise up to 50% of the world's arable land. Al-activated release of ligands (such as organic acids) from the roots is a major Al tolerance mechanism in plants. In maize, Al-activated root citrate exudation plays an important role in tolerance. However, maize Al tolerance is a complex trait involving multiple genes and physiological mechanisms. Recently, transporters from the MATE family have been shown to mediate Al-activated citrate exudation in a number of plant species. Here we describe the cloning and characterization of two MATE family members in maize, ZmMATE1 and ZmMATE2, which co-localize to major Al tolerance QTL. Both genes encode plasma membrane proteins that mediate significant anion efflux when expressed in Xenopus oocytes. ZmMATE1 expression is mostly concentrated in root tissues, is up-regulated by Al and is significantly higher in Al-tolerant maize genotypes. In contrast, ZmMATE2 expression is not specifically localized to any particular tissue and does not respond to Al. [(14)C]-citrate efflux experiments in oocytes demonstrate that ZmMATE1 is a citrate transporter. In addition, ZmMATE1 expression confers a significant increase in Al tolerance in transgenic Arabidopsis. Our data suggests that ZmMATE1 is a functional homolog of the Al tolerance genes recently characterized in sorghum, barley and Arabidopsis, and is likely to underlie the largest maize Al tolerance QTL found on chromosome 6. However, ZmMATE2 most likely does not encode a citrate transporter, and could be involved in a novel Al tolerance mechanism.


Assuntos
Alumínio/toxicidade , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Zea mays/genética , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Oócitos , Transportadores de Ânions Orgânicos/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Alinhamento de Sequência , Xenopus , Zea mays/metabolismo
13.
Plant J ; 57(3): 389-99, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18826429

RESUMO

Aluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that was previously shown to be necessary for AtALMT1 expression. Here we show that STOP1 is also required for AtMATE expression and Al-activated citrate exudation.


Assuntos
Alumínio/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Ácido Cítrico/metabolismo , Regulação da Expressão Gênica de Plantas , Malatos/metabolismo , Dados de Sequência Molecular , Transportadores de Ânions Orgânicos/genética , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
14.
Nat Genet ; 39(9): 1156-61, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17721535

RESUMO

Crop yields are significantly reduced by aluminum toxicity on highly acidic soils, which comprise up to 50% of the world's arable land. Candidate aluminum tolerance proteins include organic acid efflux transporters, with the organic acids forming non-toxic complexes with rhizosphere aluminum. In this study, we used positional cloning to identify the gene encoding a member of the multidrug and toxic compound extrusion (MATE) family, an aluminum-activated citrate transporter, as responsible for the major sorghum (Sorghum bicolor) aluminum tolerance locus, Alt(SB). Polymorphisms in regulatory regions of Alt(SB) are likely to contribute to large allelic effects, acting to increase Alt(SB) expression in the root apex of tolerant genotypes. Furthermore, aluminum-inducible Alt(SB) expression is associated with induction of aluminum tolerance via enhanced root citrate exudation. These findings will allow us to identify superior Alt(SB) haplotypes that can be incorporated via molecular breeding and biotechnology into acid soil breeding programs, thus helping to increase crop yields in developing countries where acidic soils predominate.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Alumínio/toxicidade , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Sorghum/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Resistência a Múltiplos Medicamentos/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sorghum/crescimento & desenvolvimento
15.
Genetics ; 167(4): 1905-14, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15342528

RESUMO

In several crop species within the Triticeae tribe of the grass family Poaceae, single major aluminum (Al) tolerance genes have been identified that effectively mitigate Al toxicity, a major abiotic constraint to crop production on acidic soils. However, the trait is quantitatively inherited in species within other tribes, and the possible ancestral relationships between major Al tolerance genes and QTL in the grasses remain unresolved. To help establish these relationships, we conducted a molecular genetic analysis of Al tolerance in sorghum and integrated our findings with those from previous studies performed in crop species belonging to different grass tribes. A single locus, AltSB, was found to control Al tolerance in two highly Al tolerant sorghum cultivars. Significant macrosynteny between sorghum and the Triticeae was observed for molecular markers closely linked to putatively orthologous Al tolerance loci present in the group 4 chromosomes of wheat, barley, and rye. However, AltSB was not located within the homeologous region of sorghum but rather mapped near the end of sorghum chromosome 3. Thus, AltSB not only is the first major Al tolerance gene mapped in a grass species that does not belong to the Triticeae, but also appears to be different from the major Al tolerance locus in the Triticeae. Intertribe map comparisons suggest that a major Al tolerance QTL on rice chromosome 1 is likely to be orthologous to AltSB, whereas another rice QTL on chromosome 3 is likely to correspond to the Triticeae group 4 Al tolerance locus. Therefore, this study demonstrates a clear evolutionary link between genes and QTL encoding the same trait in distantly related species within a single plant family.


Assuntos
Alumínio/farmacologia , Mapeamento Cromossômico , Tolerância a Medicamentos/genética , Poaceae/genética , Sorghum/genética , Sequência de Bases , Clonagem Molecular , Cruzamentos Genéticos , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Marcadores Genéticos , Dados de Sequência Molecular , Poaceae/efeitos dos fármacos , Polimorfismo de Fragmento de Restrição , Sorghum/efeitos dos fármacos , Especificidade da Espécie
16.
Plant Physiol ; 129(3): 1194-206, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12114573

RESUMO

Al-induced release of Al-chelating ligands (primarily organic acids) into the rhizosphere from the root apex has been identified as a major Al tolerance mechanism in a number of plant species. In the present study, we conducted physiological investigations to study the spatial and temporal characteristics of Al-activated root organic acid exudation, as well as changes in root organic acid content and Al accumulation, in an Al-tolerant maize (Zea mays) single cross (SLP 181/71 x Cateto Colombia 96/71). These investigations were integrated with biophysical studies using the patch-clamp technique to examine Al-activated anion channel activity in protoplasts isolated from different regions of the maize root. Exposure to Al nearly instantaneously activated a concentration-dependent citrate release, which saturated at rates close to 0.5 nmol citrate h(-1) root(-1), with the half-maximal rates of citrate release occurring at about 20 microM Al(3+) activity. Comparison of citrate exudation rates between decapped and capped roots indicated the root cap does not play a major role in perceiving the Al signal or in the exudation process. Spatial analysis indicated that the predominant citrate exudation is not confined to the root apex, but could be found as far as 5 cm beyond the root cap, involving cortex and stelar cells. Patch clamp recordings obtained in whole-cell and outside-out patches confirmed the presence of an Al-inducible plasma membrane anion channel in protoplasts isolated from stelar or cortical tissues. The unitary conductance of this channel was 23 to 55 pS. Our results suggest that this transporter mediates the Al-induced citrate release observed in the intact tissue. In addition to the rapid Al activation of citrate release, a slower, Al-inducible increase in root citrate content was also observed. These findings led us to speculate that in addition to the Al exclusion mechanism based on root citrate exudation, a second internal Al tolerance mechanism may be operating based on Al-inducible changes in organic acid synthesis and compartmentation. We discuss our findings in terms of recent genetic studies of Al tolerance in maize, which suggest that Al tolerance in maize is a complex trait.


Assuntos
Alumínio/metabolismo , Ácido Cítrico/metabolismo , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Alumínio/farmacologia , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Quelantes/metabolismo , Canais Iônicos/fisiologia , Transporte de Íons/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Protoplastos/efeitos dos fármacos , Protoplastos/fisiologia , Ácidos Tricarboxílicos/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA