Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 23(13): 1390-1411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515022

RESUMO

A class of organic chemicals known as polychlorinated biphenyls (PCBs) consists of chlorine, hydrogen, and carbon atoms. High boiling points, chemical stability, non-flammability, and insulating properties have enabled them to be used in various industries. Because of their high toxicity, PCBs were one of the first industrial compounds to be banned from production. These compounds have high-fat solubility with bioaccumulation and biomagnification properties in the environment, food chain, and individuals. Hence, they may have an impact not only on individual organisms but ultimately on whole ecosystems. The main sources of PCB exposure are food and environmental pollutants. In the toxicology of PCBs, oxidative stress plays the most influential function. The induction of CYP1A1 due to the high affinity of PCBs for aryl hydrocarbon receptors is considered a trigger for oxidative stress. Production of reactive oxygen species and depletion of glutathione occur due to phase Ⅰ and Ⅱ metabolism, respectively. Thus, cellular redox balance may be disrupted in the presence of PCBs and their metabolites. Chronic and long-term exposure to these compounds can often lead to life-threatening diseases, like diabetes, obesity, cardiovascular and neurological diseases, cancer, and reproductive and endocrine disorders. We present the current knowledge of the routes of PCB exposure and bioaccumulation, the outlook regarding environmental and food safety, the potential role of PCBs in various diseases, the principal mechanisms responsible for PCB toxicity, and the main detection techniques used for PCBs.


Assuntos
Neoplasias , Bifenilos Policlorados , Humanos , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Ecossistema , Monitoramento Ambiental , Inocuidade dos Alimentos
2.
Curr Med Chem ; 29(37): 5881-5894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34906054

RESUMO

BACKGROUND: Zearalenone is a well-known estrogenic mycotoxin produced by Fusarium species, a serious threat to the agricultural and food industries worldwide. Zearalenone, with its known metabolites, is a biomarker of exposure to certain fungi, primarily through food. It has considerable toxic effects on biological systems due to its carcinogenicity, mutagenicity, renal toxicity, teratogenicity, and immunotoxicity. INTRODUCTION: This study aims to design a simple, quick, precise, and cost-effective method on a biosensor platform to evaluate the low levels of this toxin in foodstuffs and agricultural products. METHODS: An aptamer-based electrochemical biosensor was introduced that utilizes screen-printed gold electrodes instead of conventional electrodes. The electrodeposition process was employed to develop a gold nanoparticle-modified surface to enhance the electroactive surface area. Thiolated aptamers were immobilized on the surface of gold nanoparticles, and subsequently, the blocker and analyte were added to the modified surface. In the presence of a redox probe, electrochemical characterization of differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy were used to investigate the various stages of aptasensor fabrication. RESULTS: The proposed aptasensor for zearalenone concentration had a wide linear dynamic range covering the 0.5 pg/mL to 100 ng/mL with a 0.14 pg/mL detection limit. Moreover, this aptasensor had high specificity so that a non-specific analyte cannot negatively affect the selectivity of the aptasensor. CONCLUSION: Overall, due to its simple design, high sensitivity, and fast performance, this aptasensor showed a high potential for assessing zearalenone in real samples, providing a clear perspective for designing a portable and cost-effective device.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Micotoxinas , Zearalenona , Aptâmeros de Nucleotídeos/química , Biomarcadores , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Zearalenona/análise
3.
Life Sci ; 281: 119799, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34229007

RESUMO

Despite numerous studies on the mechanisms of cigarette smoking toxicity over the past three decades, some aspects remain obscure. Recent developments have drawn attention to some hopeful indicators that allow us to advance our awareness of cigarette-induced cell death. Ferroptosis is considered a type of governed death of cells distinguished by the iron-dependent lipid hydroperoxide deposition to fatal concentrations. Ferroptosis has been linked with pathological settings such as neurodegenerative diseases, cancer, heart attack, hemorrhagic stroke, traumatic brain injury, ischemia-reperfusion injury, and renal dysfunction. This review tries to explain the causal role of ferroptosis cascade in cigarette smoke-mediated toxicity and cell death, highlighting associations on potential action mechanisms and proposing suggestions for its detoxifying and therapeutic interventions.


Assuntos
Ferroptose , Ferro/metabolismo , Fumaça/efeitos adversos , Produtos do Tabaco , Humanos
4.
Arch Toxicol ; 91(1): 109-130, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27761595

RESUMO

This review discusses the past and recent advancements of biosensors focusing on detection of organophosphorus pesticides (OPs) due to their exceptional use during the last decades. Apart from agricultural benefits, OPs also impose adverse toxicological effects on animal and human population. Conventional approaches such as chromatographic techniques used for pesticide detection are associated with several limitations. A biosensor technology is unique due to the detection sensitivity, selectivity, remarkable performance capabilities, simplicity and on-site operation, fabrication and incorporation with nanomaterials. This study also provided specifications of the most OPs biosensors reported until today based on their transducer system. In addition, we highlighted the application of advanced complementary materials and analysis techniques in OPs detection systems. The availability of these new materials associated with new sensing techniques has led to introduction of easy-to-use analytical tools of high sensitivity and specificity in the design and construction of OPs biosensors. In this review, we elaborated the achievements in sensing systems concerning innovative nanomaterials and analytical techniques with emphasis on OPs.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental/instrumentação , Modelos Biológicos , Compostos Organofosforados/análise , Resíduos de Praguicidas/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/tendências , Biologia Computacional/tendências , Nanotecnologia/tendências , Redes Neurais de Computação , Compostos Organofosforados/toxicidade , Resíduos de Praguicidas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA