Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202714

RESUMO

Despite significant advances in chemotherapy, the overall prognosis of hepatocellular carcinoma (HCC) remains extremely poor. HCC targeting strategies were combined with the tumor cell cytotoxicity of oncolytic viruses (OVs) to develop a more efficient and selective therapeutic system. OVs were coated with a polygalactosyl-b-agmatyl diblock copolymer (Gal32-b-Agm29), with high affinity for the asialoglycoprotein receptor (ASGPR) expressed on the liver cell surface, exploiting the electrostatic interaction of the positively charged agmatine block with the negatively charged adenoviral capsid surface. The polymer coating altered the viral particle diameter (from 192 to 287 nm) and zeta-potential (from -24.7 to 23.3 mV) while hiding the peculiar icosahedral symmetrical OV structure, as observed by TEM. Coated OVs showed high potential therapeutic value on the human hepatoma cell line HepG2 (cytotoxicity of 72.4% ± 4.96), expressing a high level of ASGPRs, while a lower effect was attained with ASPGR-negative A549 cell line (cytotoxicity of 54.4% ± 1.59). Conversely, naked OVs showed very similar effects in both tested cell lines. Gal32-b-Agm29 OV coating enhanced the infectivity and immunogenic cell death program in HepG2 cells as compared to the naked OV. This strategy provides a rationale for future studies utilizing oncolytic viruses complexed with polymers toward effective treatment of hepatocellular carcinoma.

2.
Mol Pharm ; 16(10): 4181-4189, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31465230

RESUMO

Paracetamol has been one of the most commonly used and prescribed analgesic drugs for more than a hundred years. Despite being generally well tolerated, it can result in high liver toxicity when administered in specific conditions, such as overdose, or in vulnerable individuals. We have synthesized and characterized a paracetamol galactosylated prodrug (PARgal) with the aim of improving both the pharmacodynamic and pharmacological profile of paracetamol. PARgal shows a range of physicochemical properties, solubility, lipophilicity, and chemical stability at differing physiological pH values and in human serum. PARgal could still be preclinically detected 2 h after administration, meaning that it displays reduced hepatic metabolism compared to paracetamol. In overdose conditions, PARgal has not shown any cytotoxic effect in in vitro analyses performed on human liver cells. Furthermore, when tested in an animal pain model, PARgal demonstrated a sustained analgesic effect up to the 12th hour after oral administration. These findings support the use of galactose as a suitable carrier in the development of prodrugs for analgesic treatment.


Assuntos
Acetaminofen/química , Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacologia , Galactose/química , Hiperalgesia/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Dor Pós-Operatória/tratamento farmacológico , Pró-Fármacos/farmacologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Proliferação de Células , Humanos , Hiperalgesia/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Dor Pós-Operatória/patologia , Pró-Fármacos/química , Células Tumorais Cultivadas
3.
Mol Pharm ; 15(1): 21-30, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29140706

RESUMO

Ursodeoxycholic acid (UDCA) is considered the first-choice therapy for cholestatic disorders. To enhance solubility and exploit specific transporters in liver, we synthesized a new galactosyl pro-drug of UDCA (UDCAgal). Ethinylestradiol (EE)-induced cholestasis was used to study and compare the effects of UDCAgal with UDCA on bile flow, hepatic canalicular efflux transporter expression, and inflammation. UDCAgal resulted quite stable both at pH 7.4 and 1.2 and regenerated the parent drug after incubation in human plasma. Its solubility, higher than UDCA, was pH- and temperature-independent. UDCAgal displayed a higher cell permeation compared to UDCA in liver HepG2 cells. Moreover, in cholestatic rats, UDCAgal showed a higher potency compared to UDCA in reducing serum biomarkers (AST, ALT, and ALP) and cytokines (TNF-α and IL-1ß). The higher effect of UDCAgal on the increase in bile salt export pump and multidrug resistance-associated protein 2 transcription indicated an improved spillover of bile acids from the liver. UDCAgal showed a reduction in CCL2, as well as TNF-α, IL-1ß, and cyclooxygeanse-2 mRNAs, indicating a reduction in hepatic neutrophil accumulation and inflammation. Moreover, UDCAgal, similarly to UDCA, heightens bile flow and modulates biliary acids secretion. These results indicate that UDCAgal has a potential in the treatment of cholestatic disease.


Assuntos
Colestase/tratamento farmacológico , Estrogênios/toxicidade , Ácido Ursodesoxicólico/química , Ácido Ursodesoxicólico/uso terapêutico , Animais , Colestase/metabolismo , Ciclo-Oxigenase 2/sangue , Etinilestradiol/toxicidade , Células Hep G2 , Humanos , Interleucina-1beta/sangue , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/sangue , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Ratos , Ratos Wistar , Solubilidade , Fator de Necrose Tumoral alfa/sangue , Ácido Ursodesoxicólico/síntese química
4.
J Nutr Biochem ; 30: 108-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27012627

RESUMO

The potential mechanisms of action of polyphenols in nonalcoholic fatty liver disease (NAFLD) are overlooked. Here, we evaluate the beneficial therapeutic effects of hydroxytyrosol (HT), the major metabolite of the oleuropein, in a nutritional model of insulin resistance (IR) and NAFLD by high-fat diet. Young male rats were divided into three groups receiving (1) standard diet (STD; 10.5% fat), (2) high-fat diet (HFD; 58.0% fat) and (3) HFD+HT (10 mg/kg/day by gavage). After 5 weeks, the oral glucose tolerance test was performed, and at 6th week, blood sample and tissues (liver and duodenum) were collected for following determinations. The HT-treated rats showed a marked reduction in serum AST, ALT and cholesterol and improved glucose tolerance and insulin sensitivity, reducing homeostasis model assessment index. HT significantly corrected the metabolic impairment induced by HFD, increasing hepatic peroxisome proliferator activated receptor PPAR-α and its downstream-regulated gene fibroblast growth factor 21, the phosphorylation of acetyl-CoA carboxylase and the mRNA carnitine palmitoyltransferase 1a. HT also reduced liver inflammation and nitrosative/oxidative stress decreasing the nitrosylation of proteins, reactive oxygen species production and lipid peroxidation. Moreover, HT restored intestinal barrier integrity and functions (fluorescein isothiocyanate-dextran permeability and mRNA zona occludens ZO-1). Our data demonstrate the beneficial effect of HT in the prevention of early inflammatory events responsible for the onset of IR and steatosis, reducing hepatic inflammation and nitrosative/oxidative stress and restoring glucose homeostasis and intestinal barrier integrity.


Assuntos
Modelos Animais de Doenças , Hepatite/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/terapia , Álcool Feniletílico/análogos & derivados , Animais , Duodeno/fisiopatologia , Masculino , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Álcool Feniletílico/farmacologia , Ratos
5.
Eur J Pharm Sci ; 62: 33-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24854456

RESUMO

N-Palmitoylethanolamide (PEA) is emerging as a novel therapeutic agent in the treatment of neuropathic pain and neurodegenerative diseases. Unfortunately, PEA poorly reaches the central nervous system (CNS), after peripheral administration, since it is inactivated through intracellular hydrolysis by lipid amidases. Since prodrug approach is one of the most popular methods used to increase cell permeability, the aim of this paper consists in the synthesis of a new galactosyl prodrug of PEA, the palmitoylethanolamide-succinamyl-D-galactos-6'-yl ester (PEAGAL). Biological experiments both in neuroblastoma and in C6 glioma cells, together with quantitative analyses performed through a LC-MS-MS technique, demonstrate the better efficacy of PEAGAL compared to PEA and its higher cell permeation. Our results encourage further experiments in animal models of neuropathic pain and of neurological disorders and/or neurodegenerative diseases, in order to promote a more effective peripherally administrated derivative of PEA.


Assuntos
Analgésicos/farmacologia , Galactose/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Palmitatos/farmacologia , Pró-Fármacos/farmacologia , Amidas , Analgésicos/síntese química , Analgésicos/química , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Estabilidade de Medicamentos , Etanolaminas/metabolismo , Galactose/síntese química , Galactose/química , Galactose/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Nitritos/metabolismo , Oxidopamina/toxicidade , Palmitatos/síntese química , Palmitatos/química , Ácidos Palmíticos/metabolismo , Permeabilidade/efeitos dos fármacos , Pró-Fármacos/síntese química , Pró-Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA