Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 886447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719352

RESUMO

Background: Anticancer drug efficacy is linked to the gut microbiota's composition, and there is a dire need to better understand these interactions for personalized medicine. In vitro microbiota models are promising tools for studies requiring controlled and repeatable conditions. We evaluated the impact of two anticancer drugs on human feces in the MiniBioReactor Array (MBRA) in vitro microbiota system. Methods: The MBRA is a single-stage continuous-flow culture model, hosted in an anaerobic chamber. We evaluated the effect of a 5-day treatment with hydroxycarbamide or daunorubicine on the fecal bacterial communities of two healthy donors. 16S microbiome profiling allowed analysis of microbial richness, diversity, and taxonomic changes. Results: In this host-free setting, anticancer drugs diversely affect gut microbiota composition. Daunorubicin was associated with significant changes in alpha- and beta-diversity as well as in the ratio of Firmicutes/Bacteroidetes in a donor-dependent manner. The impact of hydroxycarbamide on microbiota composition was not significant. Conclusion: We demonstrated, for the first time, the impact of anticancer drugs on human microbiota composition, in a donor- and molecule-dependent manner in an in vitro human microbiota model. We confirm the importance of personalized studies to better predict drug-associated-dysbiosis in vivo, linked to the host's response to treatment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Daunorrubicina/farmacologia , Fezes/microbiologia , Humanos , Projetos Piloto , RNA Ribossômico 16S/genética
2.
Cell Rep ; 25(8): 2163-2176.e6, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463013

RESUMO

Chronic inflammation and fibrosis characterize Duchenne muscular dystrophy (DMD). We show that pro-inflammatory macrophages are associated with fibrosis in mouse and human DMD muscle. DMD-derived Ly6Cpos macrophages exhibit a profibrotic activity by sustaining fibroblast production of collagen I. This is mediated by the high production of latent-TGF-ß1 due to the higher expression of LTBP4, for which polymorphisms are associated with the progression of fibrosis in DMD patients. Skewing macrophage phenotype via AMPK activation decreases ltbp4 expression by Ly6Cpos macrophages, blunts the production of latent-TGF-ß1, and eventually reduces fibrosis and improves DMD muscle force. Moreover, fibro-adipogenic progenitors are the main providers of TGF-ß-activating enzymes in mouse and human DMD, leading to collagen production by fibroblasts. In vivo pharmacological inhibition of TGF-ß-activating enzymes improves the dystrophic phenotype. Thus, an AMPK-LTBP4 axis in inflammatory macrophages controls the production of TGF-ß1, which is further activated by and acts on fibroblastic cells, leading to fibrosis in DMD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Ligação a TGF-beta Latente/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Fibroblastos/metabolismo , Fibrose , Inflamação/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Células NIH 3T3
3.
Stem Cell Reports ; 9(6): 2018-2033, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29198825

RESUMO

In skeletal muscle, new functions for vessels have recently emerged beyond oxygen and nutrient supply, through the interactions that vascular cells establish with muscle stem cells. Here, we demonstrate in human and mouse that endothelial cells (ECs) and myogenic progenitor cells (MPCs) interacted together to couple myogenesis and angiogenesis in vitro and in vivo during skeletal muscle regeneration. Kinetics of gene expression of ECs and MPCs sorted at different time points of regeneration identified three effectors secreted by both ECs and MPCs. Apelin, Oncostatin M, and Periostin were shown to control myogenesis/angiogenesis coupling in vitro and to be required for myogenesis and vessel formation during muscle regeneration in vivo. Furthermore, restorative macrophages, which have been previously shown to support myogenesis in vivo, were shown in a 3D triculture model to stimulate myogenesis/angiogenesis coupling, notably through Oncostatin M production. Our data demonstrate that restorative macrophages orchestrate muscle regeneration by controlling myogenesis/angiogenesis coupling.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Neovascularização Fisiológica/genética , Regeneração/genética , Animais , Apelina/genética , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Moléculas de Adesão Celular/genética , Movimento Celular/genética , Células Progenitoras Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Macrófagos/metabolismo , Camundongos , Mioblastos/citologia , Mioblastos/metabolismo , Oncostatina M/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Cicatrização
4.
J Physiol ; 595(15): 5115-5127, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369879

RESUMO

KEY POINTS: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable membrane. MPC proliferation, differentiation and fusion were assessed from cells stained for BrdU, desmin and myogenin. On biopsy cross-sections, fibroblast number was seen to increase, along with myogenic cell number, by d7 and increase further by d30, where fibroblasts were observed to be preferentially located immediately surrounding regenerating muscle fibres. In vitro, the presence of fibroblasts in direct contact with MPCs was found to moderately stimulate MPC proliferation and strongly stimulate both MPC differentiation and MPC fusion. It thus appears, in humans, that fibroblasts exert a strong positive regulatory influence on MPC activity, in line with observations during in vivo skeletal muscle regeneration.


Assuntos
Fibroblastos/fisiologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Mioblastos/fisiologia , Regeneração/fisiologia , Adulto , Antígenos CD/fisiologia , Antígenos de Diferenciação Mielomonocítica/fisiologia , Células Cultivadas , Técnicas de Cocultura , Estimulação Elétrica , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Antígenos Comuns de Leucócito/fisiologia , Macrófagos/fisiologia , Masculino , Contração Muscular , Proteína 2 Semelhante ao Fator 7 de Transcrição/fisiologia
5.
FEBS J ; 280(17): 4118-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23384231

RESUMO

Adult skeletal muscle has the remarkable property of regenerating after damage, owing to satellite cells and myogenic precursor cells becoming committed to adult myogenesis to rebuild the muscle. This process is accompanied by the continuing presence of macrophages, from the phagocytosis of damaged myofibres to the full re-formation of new myofibres. In recent years, there has been huge progress in our understanding of the roles of macrophages during skeletal muscle regeneration, notably concerning their effects on myogenic precursor cells. Here, we review the most recent knowledge acquired on monocyte entry into damaged muscle, the various macrophage subpopulations, and their respective roles during the sequential phases of muscle repair. We also discuss the role of macrophages after exercise-induced muscle damage, notably in humans.


Assuntos
Macrófagos/metabolismo , Monócitos/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/citologia , Mioblastos/citologia , Regeneração/fisiologia , Diferenciação Celular , Humanos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/citologia , Monócitos/citologia , Músculo Esquelético/metabolismo , Mioblastos/fisiologia , Fagocitose/fisiologia
6.
Stem Cells ; 31(2): 384-96, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23169615

RESUMO

Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here, we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory MPs inhibited MPC fusion while anti-inflammatory MPs strongly promoted MPC differentiation by increasing their commitment into differentiated myocytes and the formation of mature myotubes. Furthermore, the in vivo time course of expression of myogenic and MP markers was studied in regenerating human healthy muscle after damage. We observed that regenerating areas containing proliferating MPCs were preferentially associated with MPs expressing proinflammatory markers. In the same muscle, regenerating areas containing differentiating myogenin-positive MPCs were preferentially coupled to MPs harboring anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates tissue repair.


Assuntos
Células-Tronco Adultas/citologia , Macrófagos/citologia , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia , Regeneração/fisiologia , Adulto , Células-Tronco Adultas/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Citocinas/biossíntese , Citocinas/metabolismo , Expressão Gênica , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ativação de Macrófagos , Macrófagos/classificação , Macrófagos/metabolismo , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Miogenina/genética , Miogenina/metabolismo
7.
PLoS One ; 7(10): e46698, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056408

RESUMO

Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i) myoblast survival by limiting their massive death, ii) myoblast expansion within the tissue and iii) myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.


Assuntos
Macrófagos/citologia , Músculo Esquelético/citologia , Distrofias Musculares/terapia , Mioblastos/citologia , Animais , Western Blotting , Movimento Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA