Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494107

RESUMO

A long-term exposure to cigarette smoke (CS) alters the integrity of airway epithelial barrier, contributes to lung dysfunction, and elicits the expression and activity of lung cathepsin S (CatS), a cysteine protease that participates in the remodeling of connective tissue and cell junctions. Here, we observed that a short-term (4 days) exposure of mice to CS increased the expression and activity of CatS, while the expression level of zonula occludens 1 (ZO-1), an epithelial tight junction protein that stabilizes barrier assembly, was reduced in lung tissue lysates. Present data support that proteolytically active CatS may contribute to the defect of ZO-1 in CS-exposed mice.

2.
Res Sq ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38077002

RESUMO

The bone marrow is the main site of blood cell production in adults, however, rare pools of hematopoietic stem and progenitor cells with self-renewal and differentiation potential have been found in extramedullary organs. The lung is primarily known for its role in gas exchange but has recently been described as a site of blood production in mice. Here, we show that functional hematopoietic precursors reside in the extravascular spaces of the human lung, at a frequency similar to the bone marrow, and are capable of proliferation and engraftment. The organ-specific gene signature of pulmonary and medullary CD34+ hematopoietic progenitors indicates greater baseline activation of immune, megakaryocyte/platelet and erythroid-related pathways in lung progenitors. Spatial transcriptomics mapped blood progenitors in the lung to a vascular-rich alveolar interstitium niche. These results identify the lung as a pool for uniquely programmed blood stem and progenitor cells with the potential to support hematopoiesis in humans.

3.
JCI Insight ; 7(24)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36346670

RESUMO

Clinical outcomes after lung transplantation, a life-saving therapy for patients with end-stage lung diseases, are limited by primary graft dysfunction (PGD). PGD is an early form of acute lung injury with no specific pharmacologic therapies. Here, we present a large multicenter study of plasma and bronchoalveolar lavage (BAL) samples collected on the first posttransplant day, a critical time for investigations of immune pathways related to PGD. We demonstrated that ligands for NKG2D receptors were increased in the BAL from participants who developed severe PGD and were associated with increased time to extubation, prolonged intensive care unit length of stay, and poor peak lung function. Neutrophil extracellular traps (NETs) were increased in PGD and correlated with BAL TNF-α and IFN-γ cytokines. Mechanistically, we found that airway epithelial cell NKG2D ligands were increased following hypoxic challenge. NK cell killing of hypoxic airway epithelial cells was abrogated with NKG2D receptor blockade, and TNF-α and IFN-γ provoked neutrophils to release NETs in culture. These data support an aberrant NK cell/neutrophil axis in human PGD pathogenesis. Early measurement of stress ligands and blockade of the NKG2D receptor hold promise for risk stratification and management of PGD.


Assuntos
Transplante de Pulmão , Disfunção Primária do Enxerto , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Disfunção Primária do Enxerto/etiologia , Fator de Necrose Tumoral alfa , Transplante de Pulmão/efeitos adversos , Pulmão/metabolismo
4.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192546

RESUMO

Platelets have a wide range of functions including critical roles in hemostasis, thrombosis, and immunity. We hypothesized that during acute inflammation, such as in life-threatening sepsis, there are fundamental changes in the sites of platelet production and phenotypes of resultant platelets. Here, we showed during sepsis that the spleen was a major site of megakaryopoiesis and platelet production. Sepsis provoked an adrenergic-dependent mobilization of megakaryocyte-erythrocyte progenitors (MEPs) from the bone marrow to the spleen, where IL-3 induced their differentiation into megakaryocytes (MKs). In the spleen, immune-skewed MKs produced a CD40 ligandhi platelet population with potent immunomodulatory functions. Transfusions of post-sepsis platelets enriched from splenic production enhanced immune responses and reduced overall mortality in sepsis-challenged animals. These findings identify a spleen-derived protective platelet population that may be broadly immunomodulatory in acute inflammatory states such as sepsis.


Assuntos
Plaquetas , Sepse , Animais , Plaquetas/metabolismo , Ligante de CD40 , Megacariócitos , Sepse/metabolismo , Baço
5.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1127-L1140, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30908937

RESUMO

Host cell proteases are involved in influenza pathogenesis. We examined the role of tissue kallikrein 1 (KLK1) by comparing wild-type (WT) and KLK1-deficient mice infected with influenza H3N2 virus. The levels of KLK1 in lung tissue and in bronchoalveolar lavage (BAL) fluid increased substantially during infection. KLK1 did not promote virus infectivity despite its trypsin-like activity, but it did decrease the initial virus load. We examined two cell types involved in the early control of pathogen infections, alveolar macrophages (AMs) and natural killer (NK) cells to learn more about the antiviral action of KLK1. Inactivating the Klk1 gene or treating WT mice with an anti-KLK1 monoclonal antibody to remove KLK1 activity accelerated the initial virus-induced apoptotic depletion of AMs. Intranasal instillation of deficient mice with recombinant KLK1 (rKLK1) reversed the phenotype. The levels of granulocyte-macrophage colony-stimulating factor in infected BAL fluid were significantly lower in KLK1-deficient mice than in WT mice. Treating lung epithelial cells with rKLK1 increased secretion of this factor known to enhance AM resistance to pathogen-induced apoptosis. The recruitment of NK cells to the air spaces peaked 3 days after infection in WT mice but not in KLK1-deficient mice, as did increases in several NK-attracting chemokines (CCL2, CCL3, CCL5, and CXCL10) in BAL. Chronic obstructive pulmonary disease (COPD) patients are highly susceptible to viral infection, and we observed that the KLK1 mRNA levels decreased with increasing COPD severity. Our findings indicate that KLK1 intervenes early in the antiviral defense modulating the severity of influenza infection. Decreased KLK1 expression in COPD patients could contribute to the worsening of influenza.


Assuntos
Apoptose/fisiologia , Macrófagos Alveolares/patologia , Infecções por Orthomyxoviridae/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Calicreínas Teciduais/metabolismo , Células A549 , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Animais , Linhagem Celular , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Cães , Fator Estimulador de Colônias de Granulócitos e Macrófagos/análise , Humanos , Vírus da Influenza A Subtipo H3N2 , Células Matadoras Naturais/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/virologia , Mucosa Respiratória/metabolismo , Calicreínas Teciduais/antagonistas & inibidores , Calicreínas Teciduais/genética
6.
Biol Chem ; 399(9): 959-971, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29604204

RESUMO

Human tissue kallikreins (KLKs) are 15 members of the serine protease family and are present in various healthy human tissues including airway tissues. Multiple studies have revealed their crucial role in the pathophysiology of a number of chronic, infectious and tumour lung diseases. KLK1, 3 and 14 are involved in asthma pathogenesis, and KLK1 could be also associated with the exacerbation of this inflammatory disease caused by rhinovirus. KLK5 was demonstrated as an influenza virus activating protease in humans, and KLK1 and 12 could also be involved in the activation and spread of these viruses. KLKs are associated with lung cancer, with up- or downregulation of expression depending on the KLK, cancer subtype, stage of tumour and also the microenvironment. Functional studies showed that KLK12 is a potent pro-angiogenic factor. Moreover, KLK6 promotes malignant-cell proliferation and KLK13 invasiveness. In contrast, KLK8 and KLK10 reduce proliferation and invasion of malignant cells. Considering the involvement of KLKs in various physiological and pathological processes, KLKs appear to be potential biomarkers and therapeutic targets for lung diseases.


Assuntos
Calicreínas/metabolismo , Pneumopatias/enzimologia , Proliferação de Células , Humanos , Pneumopatias/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia
7.
J Virol ; 91(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28615200

RESUMO

Hemagglutinin (HA) of influenza virus must be activated by proteolysis before the virus can become infectious. Previous studies indicated that HA cleavage is driven by membrane-bound or extracellular serine proteases in the respiratory tract. However, there is still uncertainty as to which proteases are critical for activating HAs of seasonal influenza A viruses (IAVs) in humans. This study focuses on human KLK1 and KLK5, 2 of the 15 serine proteases known as the kallikrein-related peptidases (KLKs). We find that their mRNA expression in primary human bronchial cells is stimulated by IAV infection. Both enzymes cleaved recombinant HA from several strains of the H1 and/or H3 virus subtype in vitro, but only KLK5 promoted the infectivity of A/Puerto Rico/8/34 (H1N1) and A/Scotland/20/74 (H3N2) virions in MDCK cells. We assessed the ability of treated viruses to initiate influenza in mice. The nasal instillation of only the KLK5-treated virus resulted in weight loss and lethal outcomes. The secretion of this protease in the human lower respiratory tract is enhanced during influenza. Moreover, we show that pretreatment of airway secretions with a KLK5-selective inhibitor significantly reduced the activation of influenza A/Scotland/20/74 virions, providing further evidence of its importance. Differently, increased KLK1 secretion appeared to be associated with the recruitment of inflammatory cells in human airways regardless of the origin of inflammation. Thus, our findings point to the involvement of KLK5 in the proteolytic activation and spread of seasonal influenza viruses in humans.IMPORTANCE Influenza A viruses (IAVs) cause acute infection of the respiratory tract that affects millions of people during seasonal outbreaks every year. Cleavage of the hemagglutinin precursor by host proteases is a critical step in the life cycle of these viruses. Consequently, host proteases that activate HA can be considered promising targets for the development of new antivirals. However, the specific proteases that activate seasonal influenza viruses, especially H3N2 viruses, in the human respiratory tract have remain undefined despite many years of work. Here we demonstrate that the secreted, extracellular protease KLK5 (kallikrein-related peptidase 5) is efficient in promoting the infectivity of H3N2 IAV in vitro and in vivo Furthermore, we found that its secretion was selectively enhanced in the human lower respiratory tract during a seasonal outbreak dominated by an H3N2 virus. Collectively, our data support the clinical relevance of this protease in human influenza pathogenesis.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Calicreínas/metabolismo , Animais , Peso Corporal , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Proteólise , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA