Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Purinergic Signal ; 20(1): 35-45, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36918461

RESUMO

Interest has been focused in recent years on the analgesic effects exerted by adenosine and its receptors, A1, A2A, A2B, and A3 adenosine receptor (AR) subtypes, in different in vivo models of chronic pain. In particular, it was demonstrated that selective A3AR agonists reduced pro-nociceptive N-type Ca2+ channels in dorsal root ganglion (DRG) neurons isolated from rats and, by this mechanism, inhibit post inflammatory visceral hypersensitivity. In the present study, we investigate the effect of a previously reported irreversibly binding A3AR agonist, ICBM, on Ca2+ currents (ICa) in rat DRG neurons. Present data demonstrate that ICBM, an isothiocyanate derivative designed for covalent binding to the receptor, concentration-dependently inhibits ICa. This effect is irreversible, since it persists after drug removal, differently from the prototypical A3AR agonist, Cl-IB-MECA. ICBM pre-exposure inhibits the effect of a subsequent Cl-IB-MECA application. Thus, covalent A3AR agonists such as ICBM may represent an innovative, beneficial, and longer-lasting strategy to achieve efficacious chronic pain control versus commonly used, reversible, A3AR agonists. However, the possible limitations of this drug and other covalent drugs may be, for example, a characteristic adverse effect profile, suggesting that more pre-clinical studies are needed.


Assuntos
Dor Crônica , Gânglios Espinais , Ratos , Animais , Gânglios Espinais/metabolismo , Dor Crônica/metabolismo , Neurônios/metabolismo , Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptor A3 de Adenosina/metabolismo , Agonistas do Receptor A3 de Adenosina/farmacologia
2.
Biochem Pharmacol ; 177: 113956, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251679

RESUMO

Oligodendrocytes are the only myelinating cells in the brain and differentiate from their progenitors (OPCs) throughout adult life. However, this process fails in demyelinating pathologies. Adenosine is emerging as an important player in OPC differentiation and we recently demonstrated that adenosine A2A receptors inhibit cell maturation by reducing voltage-dependent K+ currents. No data are available to date about the A2B receptor (A2BR) subtype. The bioactive lipid mediator sphingosine-1-phosphate (S1P) and its receptors (S1P1-5) are also crucial modulators of OPC development. An interaction between this pathway and the A2BR is reported in peripheral cells. We studied the role of A2BRs in modulating K+ currents and cell differentiation in OPC cultures and we investigated a possible interplay with S1P signaling. Our data indicate that the A2BR agonist BAY60-6583 and its new analogue P453 inhibit K+ currents in cultured OPC and the effect was prevented by the A2BR antagonist MRS1706, by K+ channel blockers and was differently modulated by the S1P analogue FTY720-P. An acute (10 min) exposure of OPCs to BAY60-6583 also increased the phosphorylated form of sphingosine kinase 1 (SphK1). A chronic (7 days) treatment with the same agonist decreased OPC differentiation whereas SphK1/2 inhibition exerted the opposite effect. Furthermore, A2BR was overexpressed during OPC differentiation, an effect prevented by the pan SphK1/2 inhibitor VPC69047. Finally, A2BR silenced cells showed increased cell maturation, decreased SphK1 expression and enhanced S1P lyase levels. We conclude that A2BRs inhibit K+ currents and cell differentiation and positively modulate S1P synthesis in cultured OPCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Células Precursoras de Oligodendrócitos/metabolismo , Canais de Potássio/metabolismo , Receptor A2B de Adenosina/metabolismo , Esfingosina/análogos & derivados , Aminopiridinas/farmacologia , Animais , Células Cultivadas , Humanos , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Organofosfatos/farmacologia , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Purinas/farmacologia , Interferência de RNA , Ratos Wistar , Receptor A2B de Adenosina/genética , Transdução de Sinais/efeitos dos fármacos , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato/metabolismo
3.
Front Pharmacol ; 11: 588757, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643036

RESUMO

Cerebral ischemia is a multifactorial pathology characterized first by an acute injury, due to excitotoxicity, followed by a secondary brain injury that develops hours to days after ischemia. During ischemia, adenosine acts as an endogenous neuroprotectant. Few studies have investigated the role of A2B receptor in brain ischemia because of the low potency of adenosine for it and the few selective ligands developed so far. A2B receptors are scarcely but widely distributed in the brain on neurons, glial and endothelial cells and on hematopoietic cells, lymphocytes and neutrophils, where they exert mainly anti-inflammatory effects, inhibiting vascular adhesion and inflammatory cells migration. Aim of this work was to verify whether chronic administration of the A2B agonist, BAY60-6583 (0.1 mg/kg i.p., twice/day), starting 4 h after focal ischemia induced by transient (1 h) Middle Cerebral Artery occlusion (tMCAo) in the rat, was protective after the ischemic insult. BAY60-6583 improved the neurological deficit up to 7 days after tMCAo. Seven days after ischemia BAY60-6583 reduced significantly the ischemic brain damage in cortex and striatum, counteracted ischemia-induced neuronal death, reduced microglia activation and astrocytes alteration. Moreover, it decreased the expression of TNF-α and increased that of IL-10 in peripheral plasma. Two days after ischemia BAY60-6583 reduced blood cell infiltration in the ischemic cortex. The present study indicates that A2B receptors stimulation can attenuate the neuroinflammation that develops after ischemia, suggesting that A2B receptors may represent a new interesting pharmacological target to protect from degeneration after brain ischemia.

5.
J Biophotonics ; 12(10): e201900082, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31155855

RESUMO

Therapeutic and diagnostic methods based on photomechanical effects are attracting much current attention in contexts as oncology, cardiology and vascular surgery, for such applications as photoacoustic imaging or microsurgery. Their underlying mechanism is the generation of ultrasound or cavitation from the interaction of short optical pulses with endogenous dyes or targeted contrast agents. Among the latter, gold nanorods are outstanding candidates, but their use has mainly been reported for photoacoustic imaging and photothermal treatments. Conversely, much less is still known about their value as a precision tool for photomechanical manipulations, such as to impart local damage with high spatial resolution through the expansion and collapse of microbubbles. Here, we address the feasibility of gold nanorods exhibiting a distribution of surface plasmon resonances between about 900 to above 1100 nm as a contrast agent for photoacoustic theranostics. After testing their cytotoxicity and cellular uptake, we discuss their photostability and use to mediate cavitation and the photomechanical destruction of targeted cells. We find that the choice of a plasmonic band peaking around 1064 nm is key to enhance the translational potential of this approach. With respect to the standard alternative of 800 nm, at 1064 nm, relevant regulations on optical exposure are less restrictive and the photonic technology is more mature.


Assuntos
Ouro/química , Ouro/farmacologia , Nanotubos , Técnicas Fotoacústicas , Nanomedicina Teranóstica , Animais , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Camundongos , Ressonância de Plasmônio de Superfície
6.
Sci Total Environ ; 656: 1091-1101, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625641

RESUMO

Passiflora edulis Sims is a liana species of high economic interest and is an interesting model plant for understanding ozone action on disturbed vegetation. In this work we hypothesized that P. edulis has adaptive responses to oxidative stress that enable it to tolerate ozone damage based on its capacity to grow under a diversity of environmental conditions and to dominate disturbed areas. We exposed seedlings to three levels of ozone in a Free-Air Controlled Exposure (FACE) system (22, 41 and 58 ppb h AOT40 and 13.52, 17.24 and 20.62 mmol m-2 POD0, over 97 days) for identifying its tolerance mechanisms. Anatomical (leaf blade structure and fluorescence emission of chloroplast metabolites), physiological (leaf gas exchange, growth rate and biomass production) and biochemical (pigments, total sugars, starch, enzymatic and non-enzymatic antioxidant metabolites, reactive oxygen species and lipid peroxidation derivatives) responses were assessed. Ozone caused decreased total number of leaves, hyperplasia and hypertrophy of the mesophyll cells, and accelerated leaf senescence. However, O3 did not affect carbohydrates content, net photosynthetic rate, or total biomass production, indicating that the carboxylation efficiency and associated physiological processes were not affected. In addition, P. edulis showed higher leaf contents of ascorbic acid, glutathione (as well high ratio between their reduced and total forms), carotenoids, and flavonoids located in the chloroplast outer envelope membrane. Our results indicate that P. edulis is an O3-tolerant species due to morphological acclimation responses and an effective antioxidant defense system represented by non-enzymatic antioxidants, which maintained the cellular redox balance under ozone.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Ozônio/efeitos adversos , Passiflora/efeitos dos fármacos , Relação Dose-Resposta a Droga , Passiflora/anatomia & histologia , Passiflora/química , Passiflora/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Plântula/anatomia & histologia , Plântula/química , Plântula/efeitos dos fármacos , Plântula/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA