Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37437802

RESUMO

Aerobic swimming exercise in fish has been shown to improve robustness of some species. However, the optimal conditions to be applied and the mechanisms underlying remain unknown. We investigated the effects of 6 h of induced swimming on the immune response of gilthead seabream (Sparus aurata), by analysing markers related to immune status in plasma, skin mucus, gills, heart and head-kidney. Forty fish were individually exercised in swim tunnels by applying different water currents: steady low (SL, 0.8 body lengths (BL) s-1), steady high (SH, 2.3 BL s-1), oscillating low (OL, 0.2/0.8 BL s-1) and oscillating high (OH, 0.8/2.3 BL s-1) velocities, including a non-exercised group with minimal water flow (MF, <0.1 BL s-1). Swimming conditions did not trigger a stress response or anaerobic metabolism, suggested by similar levels of cortisol, lactate, and glucose in plasma among groups. Blood haemoglobin and innate immune parameters in plasma and skin mucus also remained unaltered. However, decreased blood haematocrit was observed in fish swimming on the OL condition. Interestingly, gene expression analysis revealed that the OL condition led to the up-regulation of pro-inflammatory mediators (nfκb1 and mapk3) and cytokines (tnfα, il1ß and il6) in gills. A similar response occurred in heart, with an up-regulation of nfκb1, tnfα, il6 and cox2 in the OL condition. Gene expression of these cytokines was unaltered in the head-kidney. The inflammatory response in gills and heart of gilthead seabream triggered by the OL condition highlights the importance of establishing suitable rearing conditions to improve welfare of cultured fish.


Assuntos
Dourada , Animais , Dourada/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Natação , Interleucina-6/metabolismo , Água/metabolismo
2.
Sci Rep ; 9(1): 16134, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695116

RESUMO

European seabass (Dicentrarchus labrax) production is often hampered by bacterial infections such as photobacteriosis caused by Photobacterium damselae subsp. piscicida (Phdp). Since diet can impact fish immunity, this work investigated the effect of dietary supplementation of 5% Gracilaria sp. aqueous extract (GRA) on seabass antioxidant capacity and resistance against Phdp. After infection, mortality was delayed in fish fed GRA, which also revealed increased lysozyme activity levels, as well as decreased lipid peroxidation, suggesting higher antioxidant capacity than in fish fed a control diet. Dietary GRA induced a down-regulation of hepatic stress-responsive heat shock proteins (grp-78, grp-170, grp-94, grp-75), while bacterial infection caused a down-regulation in antioxidant genes (prdx4 and mn-sod). Diet and infection interaction down-regulated the transcription levels of genes associated with oxidative stress response (prdx5 and gpx4) in liver. In head-kidney, GRA led to an up-regulation of genes associated with inflammation (il34, ccr9, cd33) and a down-regulation of genes related to cytokine signalling (mif, il1b, defb, a2m, myd88). Additionally, bacterial infection up-regulated immunoglobulins production (IgMs) and down-regulated the transcription of the antimicrobial peptide leap2 in head kidney. Overall, we found that GRA supplementation modulated seabass resistance to Phdp infection.


Assuntos
Ração Animal , Bass/fisiologia , Suplementos Nutricionais , Doenças dos Peixes/prevenção & controle , Gracilaria , Infecções por Bactérias Gram-Negativas/veterinária , Photobacterium , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Aquicultura , Bass/sangue , Bass/imunologia , Glicemia/análise , Citocinas/biossíntese , Citocinas/genética , Resistência à Doença , Doenças dos Peixes/dietoterapia , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/dietoterapia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Rim Cefálico/metabolismo , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Imunoglobulina M/biossíntese , Peroxidação de Lipídeos , Fígado/metabolismo , Muramidase/sangue , Triglicerídeos/sangue
3.
Lipids ; 51(6): 729-41, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27169705

RESUMO

The meagre (Argyrosomus regius) is taking on increasing importance in the aquaculture industry. In view of the limited supply of fish oil (FO) as a feed ingredient, the study of the capacity to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA) from alternative dietary oil sources is important. We analyzed changes in fatty acid (FA) desaturase 2 (fads2) and FA elongase 5 (elovl5) mRNA levels in livers and brains in response to FO replacement with a blend of vegetable oils (VO) and selenium (Se) supplementation. Fish were fed for 60 days with either a diet containing FO or a diet including VO, each supplemented or not with organic Se. Results showed that fads2 and elovl5 transcription was higher in liver when fish were fed VO diets. The brain mRNA levels of both genes were not affected by the dietary replacement of FO by VO. FA composition in the liver and skeletal muscle was altered by FO replacement, particularly by decreasing eicosapentaenoic acid and docosahexaenoic acid contents. The α-linolenic, linoleic, and arachidonic acid contents increased in both liver and brain of fish fed VO diets. The effect of Se supplementation on lipid metabolism was evident only in fish fed FO, showing a decrease in the transcription of hepatic fads2. Results indicate that the total replacement of FO by VO in diets modulates the expression of genes involved in LC-PUFA biosynthesis in meagre, affecting the FA profile of the fish flesh.


Assuntos
Acetiltransferases/genética , Ácidos Graxos Dessaturases/genética , Perciformes/genética , Óleos de Plantas/administração & dosagem , Selênio/administração & dosagem , Animais , Encéfalo/metabolismo , Gorduras na Dieta/administração & dosagem , Suplementos Nutricionais , Elongases de Ácidos Graxos , Ácidos Graxos/metabolismo , Proteínas de Peixes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Óleos de Plantas/farmacologia , Selênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA