Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109853, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38784007

RESUMO

The voltage-dependent anion-selective channel isoform 1 (VDAC1) is a pivotal component in cellular metabolism and apoptosis with a prominent role in many cancer types, offering a unique therapeutic intervention point. Through an in-silico-to-in-vitro approach we identified a set of VA molecules (VDAC Antagonists) that selectively bind to VDAC1 and display specificity toward cancer cells. Biochemical characterization showed that VA molecules can directly interact with VDAC1 with micromolar affinity by competing with the endogenous ligand NADH for a partially shared binding site. NADH displacement results in mitochondrial distress and reduced cell proliferation, especially when compared to non-cancerous cells. Experiments performed on organoids derived from intrahepatic cholangiocarcinoma patients demonstrated a dose-dependent reduction in cell viability upon treatment with VA molecules with lower impact on healthy cells than conventional treatments like gemcitabine. VA molecules are chemical entities representing promising candidates for further optimization and development as cancer therapy strategies through precise metabolic interventions.

2.
J Gen Virol ; 104(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37750869

RESUMO

Hepatitis C virus (HCV) infects millions of people worldwide and is a leading cause of liver disease. Despite recent advances in antiviral therapies, viral resistance can limit drug efficacy and understanding the mechanisms that confer viral escape is important. We employ an unbiased interactome analysis to discover host binding partners of the HCV non-structural protein 5A (NS5A), a key player in viral replication and assembly. We identify ASPP2, apoptosis-stimulating protein of p53, as a new host co-factor that binds NS5A via its SH3 domain. Importantly, silencing ASPP2 reduces viral replication and spread. Our study uncovers a previously unknown role for ASPP2 to potentiate HCV RNA replication.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Domínios de Homologia de src , Replicação Viral , Proteínas não Estruturais Virais/metabolismo , Domínios Proteicos
3.
Viruses ; 14(8)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36016428

RESUMO

BACKGROUND AND AIMS: Sex hormones are widely recognised to act as protective factors against several viral infections. Specifically, females infected by the hepatitis C virus display higher clearance rates and reduced disease progression than those found in males. Through modulation of particle release and spread, 17ß-oestradiol controls HCV's life cycle. We investigated the mechanism(s) behind oestrogen's antiviral effect. METHODS: We used cell culture-derived hepatitis C virus in in vitro assays to evaluate the effect of 17ß-oestradiol on the innate immune response. Host immune responses were evaluated by enumerating gene transcripts via RT-qPCR in cells exposed to oestrogen in the presence or absence of viral infection. Antiviral effects were determined by focus-forming unit assay or HCV RNA quantification. RESULTS: Stimulation of 17ß-oestradiol triggers a pre-activated antiviral state in hepatocytes, which can be maintained for several hours after the hormone is removed. This induction results in the elevation of several innate immune genes, such as interferon alpha and beta, tumour necrosis factor, toll-like receptor 3 and interferon regulatory factor 5. We demonstrated that this pre-activation of immune response signalling is not affected by a viral presence, and the antiviral state can be ablated using an interferon-alpha/beta receptor alpha inhibitor. Finally, we proved that the oestrogen-induced stimulation is essential to generate an antiviral microenvironment mediated by activation of type I interferons. CONCLUSION: Resulting in viral control and suppression, 17ß-oestradiol induces an interferon-mediated antiviral state in hepatocytes. Oestrogen-stimulated cells modulate the immune response through secretion of type I interferon, which can be countered by blocking interferon-alpha/beta receptor alpha signalling.


Assuntos
Hepatite C , Interferon Tipo I , Antivirais/uso terapêutico , Estradiol/metabolismo , Estradiol/farmacologia , Estradiol/uso terapêutico , Estrogênios/metabolismo , Estrogênios/farmacologia , Estrogênios/uso terapêutico , Feminino , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatócitos/metabolismo , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Interferon-alfa/farmacologia , Masculino , Replicação Viral
4.
Adv Healthc Mater ; 11(20): e2201203, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856921

RESUMO

Extracellular vesicles (EVs) are emerging as powerful players in cell-to-cell communication both in healthy and diseased brain. In Parkinson's disease (PD)-characterized by selective dopaminergic neuron death in ventral midbrain (VMB) and degeneration of their terminals in striatum (STR)-astrocytes exert dual harmful/protective functions, with mechanisms not fully elucidated. Here, this study shows that astrocytes from the VMB-, STR-, and VMB/STR-depleted brains release a population of small EVs  in a region-specific manner. Interestingly, VMB-astrocytes secreted the highest rate of EVs, which is further exclusively increased in response to CCL3, a chemokine that promotes robust dopaminergic neuroprotection in different PD models. The neuroprotective potential of nigrostriatal astrocyte-EVs is investigated in differentiated versus undifferentiated SH-SY5Y cells exposed to oxidative stress and mitochondrial toxicity. EVs from both VMB- and STR-astrocytes counteract H2 O2 -induced caspase-3 activation specifically in differentiated cells, with EVs from CCL3-treated astrocytes showing a higher protective effect. High resolution respirometry further reveals that nigrostriatal astrocyte-EVs rescue neuronal mitochondrial complex I function impaired by the neurotoxin MPP+ . Notably, only EVs from VMB-astrocyte fully restore ATP production, again specifically in differentiated SH-SY5Y. These results highlight a regional diversity in the nigrostriatal system for the secretion and activities of astrocyte-EVs, with neuroprotective implications for PD.


Assuntos
Vesículas Extracelulares , Neuroblastoma , Doença de Parkinson , Humanos , Astrócitos/metabolismo , Doença de Parkinson/metabolismo , Neurotoxinas/metabolismo , Neurotoxinas/farmacologia , Caspase 3/metabolismo , Neuroblastoma/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mitocôndrias , Morte Celular , Vesículas Extracelulares/metabolismo , Dopamina/farmacologia , Trifosfato de Adenosina/metabolismo
5.
Life (Basel) ; 12(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743925

RESUMO

α-synuclein (αSyn) is a small neuronal protein whose accumulation correlates with Parkinson's disease. αSyn A53T mutant impairs mitochondrial functions by affecting substrate import within the organelle, activity of complex I and the maximal respiratory capacity. However, the precise mechanism initiating the bioenergetic dysfunction is not clearly understood yet. By overexpressing αSyn A53T in SH-SY5Y cells, we investigated the specific changes in the mitochondrial respiratory profile using High-Resolution Respirometry. We found that αSyn A53T increases dissipative fluxes across the intermembrane mitochondrial space: this does not compromise the oxygen flows devoted to ATP production while it reduces the bioenergetic excess capacity of mitochondria, providing a possible explanation of the increased cell susceptibility observed in the presence of further stress stimuli.

6.
Redox Biol ; 51: 102264, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35180474

RESUMO

Unraveling the role of VDAC3 within living cells is challenging and still requires a definitive answer. Unlike VDAC1 and VDAC2, the outer mitochondrial membrane porin 3 exhibits unique biophysical features that suggest unknown cellular functions. Electrophysiological studies on VDAC3 carrying selective cysteine mutations and mass spectrometry data about the redox state of such sulfur containing amino acids are consistent with a putative involvement of isoform 3 in mitochondrial ROS homeostasis. Here, we thoroughly examined this issue and provided for the first time direct evidence of the role of VDAC3 in cellular response to oxidative stress. Depletion of isoform 3 but not isoform 1 significantly exacerbated the cytotoxicity of redox cyclers such as menadione and paraquat, and respiratory complex I inhibitors like rotenone, promoting uncontrolled accumulation of mitochondrial free radicals. High-resolution respirometry of transiently transfected HAP1-ΔVDAC3 cells expressing the wild type or the cysteine-null mutant VDAC3 protein, unequivocally confirmed that VDAC3 cysteines are indispensable for protein ability to counteract ROS-induced oxidative stress.


Assuntos
Cisteína , Canais de Ânion Dependentes de Voltagem , Cisteína/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
7.
Nat Commun ; 12(1): 1658, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712578

RESUMO

Chronic hepatitis B virus (HBV) infection is a major cause of liver disease and cancer worldwide for which there are no curative therapies. The major challenge in curing infection is eradicating or silencing the covalent closed circular DNA (cccDNA) form of the viral genome. The circadian factors BMAL1/CLOCK and REV-ERB are master regulators of the liver transcriptome and yet their role in HBV replication is unknown. We establish a circadian cycling liver cell-model and demonstrate that REV-ERB directly regulates NTCP-dependent hepatitis B and delta virus particle entry. Importantly, we show that pharmacological activation of REV-ERB inhibits HBV infection in vitro and in human liver chimeric mice. We uncover a role for BMAL1 to bind HBV genomes and increase viral promoter activity. Pharmacological inhibition of BMAL1 through REV-ERB ligands reduces pre-genomic RNA and de novo particle secretion. The presence of conserved E-box motifs among members of the Hepadnaviridae family highlight an evolutionarily conserved role for BMAL1 in regulating this family of small DNA viruses.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Vírus da Hepatite B/fisiologia , Replicação Viral/fisiologia , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/genética , Ritmo Circadiano/genética , DNA Circular , DNA Viral/metabolismo , Regulação da Expressão Gênica , Genoma Viral , Células Hep G2 , Hepatite B/virologia , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Hepatócitos/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Fígado/metabolismo , Camundongos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Regiões Promotoras Genéticas , Simportadores/metabolismo , Transcriptoma , Vírion/metabolismo , Internalização do Vírus
8.
Front Immunol ; 12: 775098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975862

RESUMO

Hepatitis C virus (HCV) is highly variable and transmits through infected blood to establish a chronic liver infection in the majority of patients. Our knowledge on the infectivity of clinical HCV strains is hampered by the lack of in vitro cell culture systems that support efficient viral replication. We and others have reported that HCV can associate with and infect immune cells and may thereby evade host immune surveillance and elimination. To evaluate whether B cells play a role in HCV transmission, we assessed the ability of B cells and sera from recent (<2 years) or chronic (≥ 2 years) HCV patients to infect humanized liver chimeric mice. HCV was transmitted by B cells from chronic infected patients whereas the sera were non-infectious. In contrast, B cells from recently infected patients failed to transmit HCV to the mice, whereas all serum samples were infectious. We observed an association between circulating anti-glycoprotein E1E2 antibodies and B cell HCV transmission. Taken together, our studies provide evidence for HCV transmission by B cells, findings that have clinical implications for prophylactic and therapeutic antibody-based vaccine design.


Assuntos
Linfócitos B/virologia , Hepacivirus/patogenicidade , Hepatite C/transmissão , Adulto , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/sangue , Anticorpos Amplamente Neutralizantes/imunologia , Modelos Animais de Doenças , Feminino , Hepacivirus/imunologia , Hepacivirus/isolamento & purificação , Hepatite C/sangue , Hepatite C/prevenção & controle , Hepatite C/virologia , Humanos , Fígado/patologia , Fígado/virologia , Transplante de Fígado , Masculino , Camundongos , Pessoa de Meia-Idade , Soro/virologia , Quimeras de Transplante , Desenvolvimento de Vacinas/métodos , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/uso terapêutico , Adulto Jovem
9.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846416

RESUMO

Hepatitis B virus (HBV) is the prototype member of the family Hepadnaviridae and replicates via episomal copies of a covalently closed circular DNA (cccDNA) genome of approximately 3.2 kb. The chromatinization of this small viral genome, with overlapping open reading frames and regulatory elements, suggests an important role for epigenetic pathways to regulate HBV transcription. However, the host pathways that regulate HBV transcription and the temporal nature of promoter usage in infected cells are not well understood, in part due to the compact genome structure and overlapping open reading frames. To address this we developed a simple and cost-effective PCR assay to quantify the major viral RNAs and validated this technique using current state-of-art de novo HBV infection model systems. Our PCR method is three orders of magnitude more sensitive than Northern blot and requires relatively small amounts of starting material, making this an attractive tool for assessing HBV transcription.


Assuntos
Vírus da Hepatite B/genética , Reação em Cadeia da Polimerase/métodos , RNA Viral/análise , Transcrição Gênica , Células Hep G2 , Humanos , RNA Viral/genética , Sensibilidade e Especificidade , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
10.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105548

RESUMO

MPP+ is the active metabolite of MPTP, a molecule structurally similar to the herbicide Paraquat, known to injure the dopaminergic neurons of the nigrostriatal system in Parkinson's disease models. Within the cells, MPP+ accumulates in mitochondria where it inhibits complex I of the electron transport chain, resulting in ATP depletion and neuronal impairment/death. So far, MPP+ is recognized as a valuable tool to mimic dopaminergic degeneration in various cell lines. However, despite a large number of studies, a detailed characterization of mitochondrial respiration in neuronal cells upon MPP+ treatment is still missing. By using high-resolution respirometry, we deeply investigated oxygen consumption related to each respiratory state in differentiated neuroblastoma cells exposed to the neurotoxin. Our results indicated the presence of extended mitochondrial damage at the inner membrane level, supported by increased LEAK respiration, and a drastic drop in oxygen flow devoted to ADP phosphorylation in respirometry measurements. Furthermore, prior to complex I inhibition, an enhancement of complex II activity was observed, suggesting the occurrence of some compensatory effect. Overall our findings provide a mechanistic insight on the mitochondrial toxicity mediated by MPP+, relevant for the standardization of studies that employ this neurotoxin as a disease model.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doença de Parkinson/patologia , 1-Metil-4-fenilpiridínio/toxicidade , Difosfato de Adenosina/metabolismo , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Oxigênio/metabolismo , Respiração
11.
Sci Rep ; 10(1): 14101, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839523

RESUMO

Hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC) worldwide. The prolyl hydroxylase domain (PHD)-hypoxia inducible factor (HIF) pathway is a key mammalian oxygen sensing pathway and is frequently perturbed by pathological states including infection and inflammation. We discovered a significant upregulation of hypoxia regulated gene transcripts in patients with chronic hepatitis B (CHB) in the absence of liver cirrhosis. We used state-of-the-art in vitro and in vivo HBV infection models to evaluate a role for HBV infection and the viral regulatory protein HBx to drive HIF-signalling. HBx had no significant impact on HIF expression or associated transcriptional activity under normoxic or hypoxic conditions. Furthermore, we found no evidence of hypoxia gene expression in HBV de novo infection, HBV infected human liver chimeric mice or transgenic mice with integrated HBV genome. Collectively, our data show clear evidence of hypoxia gene induction in CHB that is not recapitulated in existing models for acute HBV infection, suggesting a role for inflammatory mediators in promoting hypoxia gene expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/genética , Hepatite B Crônica/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fígado/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo
12.
Sci Rep ; 10(1): 13271, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764708

RESUMO

Human immunodeficiency virus 1 (HIV-1) is a life-threatening pathogen that still lacks a curative therapy or vaccine. Despite the reduction in AIDS-related deaths achieved by current antiretroviral therapies, drawbacks including drug resistance and the failure to eradicate infection highlight the need to identify new pathways to target the infection. Circadian rhythms are endogenous 24-h oscillations which regulate physiological processes including immune responses to infection, and there is an emerging role for the circadian components in regulating viral replication. The molecular clock consists of transcriptional/translational feedback loops that generate rhythms. In mammals, BMAL1 and CLOCK activate rhythmic transcription of genes including the nuclear receptor REV-ERBα, which represses BMAL1 and plays an essential role in sustaining a functional clock. We investigated whether REV-ERB activity regulates HIV-1 replication and found REV-ERB agonists inhibited HIV-1 promoter activity in cell lines, primary human CD4 T cells and macrophages, whilst antagonism or genetic disruption of REV-ERB increased promoter activity. The REV-ERB agonist SR9009 inhibited promoter activity of diverse HIV-subtypes and HIV-1 replication in primary T cells. This study shows a role for REV-ERB synthetic agonists to inhibit HIV-1 LTR promoter activity and viral replication, supporting a role for circadian clock components in regulating HIV-1 replication.


Assuntos
Antivirais/farmacologia , Repetição Terminal Longa de HIV/efeitos dos fármacos , HIV-1/fisiologia , Pirrolidinas/farmacologia , Tiofenos/farmacologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Relógios Circadianos/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Humanos , Células Jurkat , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/virologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores dos Hormônios Tireóideos/metabolismo , Replicação Viral/efeitos dos fármacos , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo
13.
Commun Biol ; 3(1): 376, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665623

RESUMO

Viral replication is defined by the cellular microenvironment and one key factor is local oxygen tension, where hypoxia inducible factors (HIFs) regulate the cellular response to oxygen. Human immunodeficiency virus (HIV) infected cells within secondary lymphoid tissues exist in a low-oxygen or hypoxic environment in vivo. However, the majority of studies on HIV replication and latency are performed under laboratory conditions where HIFs are inactive. We show a role for HIF-2α in restricting HIV transcription via direct binding to the viral promoter. Hypoxia reduced tumor necrosis factor or histone deacetylase inhibitor, Romidepsin, mediated reactivation of HIV and inhibiting HIF signaling-pathways reversed this phenotype. Our data support a model where the low-oxygen environment of the lymph node may suppress HIV replication and promote latency. We identify a mechanism that may contribute to the limited efficacy of latency reversing agents in reactivating HIV and suggest new strategies to control latent HIV-1.


Assuntos
HIV-1/fisiologia , Latência Viral/fisiologia , Replicação Viral/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Microambiente Celular , Citometria de Fluxo , Humanos , Hipóxia/metabolismo , Hipóxia/virologia , Tecido Linfoide/metabolismo , Tecido Linfoide/virologia , Oxigênio , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Viral/fisiologia , Ativação Viral
14.
Genome Biol ; 21(1): 54, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127008

RESUMO

We present long-read Tet-assisted pyridine borane sequencing (lrTAPS) for targeted base-resolution sequencing of DNA methylation and hydroxymethylation in regions up to 10 kb from nanogram-level input. Compatible with both Oxford Nanopore and PacBio Single-Molecule Real-Time (SMRT) sequencing, lrTAPS detects methylation with accuracy comparable to short-read Illumina sequencing but with long-range epigenetic phasing. We applied lrTAPS to sequence difficult-to-map regions in mouse embryonic stem cells and to identify distinct methylation events in the integrated hepatitis B virus genome.


Assuntos
Metilação de DNA , Análise de Sequência de DNA/métodos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/análise , Animais , Compostos de Boro/química , Células Cultivadas , DNA/química , Células Hep G2 , Humanos , Camundongos , Oxigenases de Função Mista/metabolismo , Sequenciamento por Nanoporos/métodos , Oxirredução , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/química
15.
J Gen Physiol ; 152(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31935282

RESUMO

Voltage-dependent anion channel (VDAC) is the major pathway for the transport of ions and metabolites across the mitochondrial outer membrane. Among the three known mammalian VDAC isoforms, VDAC3 is the least characterized, but unique functional roles have been proposed in cellular and animal models. Yet, a high-sequence similarity between VDAC1 and VDAC3 is indicative of a similar pore-forming structure. Here, we conclusively show that VDAC3 forms stable, highly conductive voltage-gated channels that, much like VDAC1, are weakly anion selective and facilitate metabolite exchange, but exhibit unique properties when interacting with the cytosolic proteins α-synuclein and tubulin. These two proteins are known to be potent regulators of VDAC1 and induce similar characteristic blockages (on the millisecond time scale) of VDAC3, but with 10- to 100-fold reduced on-rates and altered α-synuclein blocking times, indicative of an isoform-specific function. Through cysteine scanning mutagenesis, we found that VDAC3's cysteine residues regulate its interaction with α-synuclein, demonstrating VDAC3-unique functional properties and further highlighting a general molecular mechanism for VDAC isoform-specific regulation of mitochondrial bioenergetics.


Assuntos
Citosol/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Isoformas de Proteínas/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Biologia/métodos , Cisteína/metabolismo , Humanos , Camundongos , Sinucleínas/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
16.
ACS Omega ; 3(9): 11415-11425, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30320261

RESUMO

Voltage-dependent anion-selective channels (VDACs) are primarily located in the mitochondrial outer membrane (MOM). They are essential for the regulation of ion and metabolite exchanges. In particular, their role in energy-related nucleotide exchange has many implications in apoptosis, cancer, and neurodegenerative diseases. It has been proposed that VDACs' functions are regulated by mobility of the N-terminal helical domain, which is bound to the inner wall of the main ß-barrel domain but exists in equilibrium between the bound-folded and the unbound-unfolded state. When the N-terminal domain detaches from the channel's wall and eventually leaves the lumen, it can either stay exposed to the cytosolic environment or interact with the outer leaflet of the MOM; then, it may also interact with other protein partners. In humans, three different VDAC isoforms are expressed at different tissue-specific levels with evidence of distinct roles. Although the N-terminal domains share high sequence similarity, important differences do exist, with the functionality of the entire protein mostly attributed to them. In this work, the three-dimensional structure and membrane affinity of the three isolated hVDAC N-terminal peptides have been compared through Fourier-transform infrared and NMR spectroscopy in combination with molecular dynamics simulations, and measurement of the surface pressure of lipid monolayers. Although peptides were studied as isolated from the ß-barrel domain, the observed differences are relevant for those whole protein's functions in which a protein-protein interaction is mediated by the N-terminal domain.

17.
Biochim Biophys Acta Bioenerg ; 1859(9): 806-816, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890122

RESUMO

VDACs three isoforms (VDAC1, VDAC2, VDAC3) are integral proteins of the outer mitochondrial membrane whose primary function is to permit the communication and exchange of molecules related to the mitochondrial functions. We have recently reported about the peculiar over-oxidation of VDAC3 cysteines. In this work we have extended our analysis, performed by tryptic and chymotryptic proteolysis and UHPLC/High Resolution ESI-MS/MS, to the other two isoforms VDAC1 and VDAC2 from rat liver mitochondria, and we have been able to find also in these proteins over-oxidation of cysteines. Further PTM of cysteines as succination has been found, while the presence of selenocysteine was not detected. Unfortunately, a short sequence stretch containing one genetically encoded cysteine was not covered both in VDAC2 and in VDAC3, raising the suspect that more, unknown modifications of these proteins exist. Interestingly, cysteine over-oxidation appears to be an exclusive feature of VDACs, since it is not present in other transmembrane mitochondrial proteins eluted by hydroxyapatite. The assignment of a functional role to these modifications of VDACs will be a further step towards the full understanding of the roles of these proteins in the cell.


Assuntos
Cisteína/química , Mitocôndrias Hepáticas/metabolismo , Processamento de Proteína Pós-Traducional , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Sequência de Aminoácidos , Animais , Cisteína/metabolismo , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/química , Canal de Ânion 2 Dependente de Voltagem/genética
18.
Front Chem ; 6: 108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682501

RESUMO

Cancer and neurodegeneration are different classes of diseases that share the involvement of mitochondria in their pathogenesis. Whereas the high glycolytic rate (the so-called Warburg metabolism) and the suppression of apoptosis are key elements for the establishment and maintenance of cancer cells, mitochondrial dysfunction and increased cell death mark neurodegeneration. As a main actor in the regulation of cell metabolism and apoptosis, VDAC may represent the common point between these two broad families of pathologies. Located in the outer mitochondrial membrane, VDAC forms channels that control the flux of ions and metabolites across the mitochondrion thus mediating the organelle's cross-talk with the rest of the cell. Furthermore, the interaction with both pro-apoptotic and anti-apoptotic factors makes VDAC a gatekeeper for mitochondria-mediated cell death and survival signaling pathways. Unfortunately, the lack of an evident druggability of this protein, since it has no defined binding or active sites, makes the quest for VDAC interacting molecules a difficult tale. Pharmacologically active molecules of different classes have been proposed to hit cancer and neurodegeneration. In this work, we provide an exhaustive and detailed survey of all the molecules, peptides, and microRNAs that exploit VDAC in the treatment of the two examined classes of pathologies. The mechanism of action and the potential or effectiveness of each compound are discussed.

19.
Liver Int ; 37(5): 669-677, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27885811

RESUMO

BACKGROUND & AIMS: Oestrogen and oestrogen-mediated signalling protect from hepatitis C virus through incompletely understood mechanisms. We aimed to ascertain which phase(s) of hepatitis C virus life cycle is/are affected by oestrogens. METHODS: Huh7 cells infected with the JFH1 virus (genotype 2a) were exposed to dehydroepiandrosterone, testosterone, progesterone and 17ß-estradiol (tested with/without its receptor antagonist fulvestrant). Dose-response curves were established to calculate half maximal inhibitory concentration values. To dissect how 17ß-estradiol interferes with phases of hepatitis C virus life cycle, its effects were measured on the hepatitis C virus pseudo-particle system (viral entry), the subgenomic replicon N17/JFH1 and the replicon cell line Huh7-J17 (viral replication). Finally, in a dual-step infection model, infectious supernatants, collected from infected cells exposed to hormones, were used to infect naïve cells. RESULTS: Progesterone and testosterone showed no inhibitory effect on hepatitis C virus; dehydroepiandrosterone was only mildly inhibitory. In contrast, 17ß-estradiol inhibited infection by 64%-67% (IC50 values 140-160 nmol/L). Fulvestrant reverted the inhibition by 17ß-estradiol in a dose-dependent manner. 17ß-estradiol exerted only a slight inhibition (<20%) on hepatitis C virus pseudo-particles, and had no effect on cells either transiently or stably (Huh7-J17 cells) expressing the N17/JFH1 replicon. In the dual-step infection model, a significant half maximal inhibitory concentration decline occurred between primary (134 nmol/L) and secondary (100 nmol/L) infections (P=.02), with extracellular hepatitis C virus RNA and infectivity being reduced to a higher degree in comparison to its intracellular counterpart. CONCLUSIONS: 17ß-estradiol inhibits hepatitis C virus acting through its intracellular receptors, mainly interfering with late phases (assembly/release) of the hepatitis C virus life cycle.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Humanos , Progesterona/farmacologia , RNA Viral/efeitos dos fármacos , Replicon/efeitos dos fármacos , Testosterona/farmacologia , Internalização do Vírus/efeitos dos fármacos
20.
Biomark Med ; 10(12): 1241-1249, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27924629

RESUMO

AIM: To evaluate serum growth arrest-specific gene 6 (Gas6) concentration as a biomarker of liver fibrosis progression. MATERIALS & METHODS: One hundred and thirteen consecutive patients affected by chronic liver disease underwent transient elastography, Gas6 measurement and, if clinically indicated, liver biopsy. RESULTS: Gas6 concentration was directly correlated to liver stiffness (r = 0.67; p < 0.0001) and was significantly higher in patients with advanced fibrosis (Ishak 4-5; p < 0.001). A plasma concentration <30 ng/ml Gas6 ruled out fibrosis with 84% sensitivity and 56% specificity, while values >42 ng/ml identified severe fibrosis with a sensitivity of 64% and a specificity of 95%; the diagnostic accuracy was comparable to that of transient elastography. CONCLUSION: Gas6 is a novel biomarker of liver fibrosis, with a potential clinical and pathophysiological relevance.


Assuntos
Biomarcadores/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Cirrose Hepática/diagnóstico , Idoso , Área Sob a Curva , Técnicas de Imagem por Elasticidade , Feminino , Hepatite B/complicações , Hepatite B/diagnóstico , Hepatite B/epidemiologia , Hepatite C/complicações , Hepatite C/diagnóstico , Hepatite C/epidemiologia , Humanos , Fígado/fisiopatologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade , Curva ROC , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA