Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 620(7972): 128-136, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468623

RESUMO

Studies have demonstrated that at least 20% of individuals infected with SARS-CoV-2 remain asymptomatic1-4. Although most global efforts have focused on severe illness in COVID-19, examining asymptomatic infection provides a unique opportunity to consider early immunological features that promote rapid viral clearance. Here, postulating that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection, we enrolled 29,947 individuals, for whom high-resolution HLA genotyping data were available, in a smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n = 1,428) comprised unvaccinated individuals who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci with disease course and identified a strong association between HLA-B*15:01 and asymptomatic infection, observed in two independent cohorts. Suggesting that this genetic association is due to pre-existing T cell immunity, we show that T cells from pre-pandemic samples from individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF. The majority of the reactive T cells displayed a memory phenotype, were highly polyfunctional and were cross-reactive to a peptide derived from seasonal coronaviruses. The crystal structure of HLA-B*15:01-peptide complexes demonstrates that the peptides NQKLIANQF and NQKLIANAF (from OC43-CoV and HKU1-CoV) share a similar ability to be stabilized and presented by HLA-B*15:01. Finally, we show that the structural similarity of the peptides underpins T cell cross-reactivity of high-affinity public T cell receptors, providing the molecular basis for HLA-B*15:01-mediated pre-existing immunity.


Assuntos
Alelos , Infecções Assintomáticas , COVID-19 , Antígenos HLA-B , Humanos , COVID-19/genética , COVID-19/imunologia , COVID-19/fisiopatologia , COVID-19/virologia , Epitopos de Linfócito T/imunologia , Peptídeos/imunologia , SARS-CoV-2/imunologia , Antígenos HLA-B/imunologia , Estudos de Coortes , Linfócitos T/imunologia , Epitopos Imunodominantes/imunologia , Reações Cruzadas/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
2.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36765663

RESUMO

Loss of cytotoxicity and defective metabolism are linked to glycogen synthase kinase 3 beta (GSK3ß) overexpression in natural killer (NK) cells from patients with acute myeloid leukemia or from healthy donors after expansion ex vivo with IL-15. Drug inhibition of GSK3ß in these NK cells improves their maturation and cytotoxic activity, but the mechanisms of GSK3ß-mediated dysfunction have not been well studied. Here, we show that expansion of NK cells with feeder cells expressing membrane-bound IL-21 maintained normal GSK3ß levels, allowing us to study GSK3ß function using CRISPR gene editing. We deleted GSK3B and expanded paired-donor knockout and wild-type (WT) NK cells and then assessed transcriptional and functional alterations induced by loss of GSK3ß. Surprisingly, our data showed that deletion of GSK3B did not alter cytotoxicity, cytokine production, or maturation (as determined by CD57 expression). However, GSK3B-KO cells demonstrated significant changes in expression of genes related to rRNA processing, cell proliferation, and metabolic function, suggesting possible metabolic reprogramming. Next, we found that key genes downregulated in GSK3B-KO NK cells were upregulated in GSK3ß-overexpressing NK cells from AML patients, confirming this correlation in a clinical setting. Lastly, we measured cellular energetics and observed that GSK3B-KO NK cells exhibited 150% higher spare respiratory capacity, a marker of metabolic fitness. These findings suggest a role for GSK3ß in regulating NK cell metabolism.

3.
PLoS One ; 8(1): e53372, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326421

RESUMO

Human amniotic fluid contains cells that potentially have important stem cell characteristics, yet the programs controlling their developmental potency are unclear. Here, we provide evidence that amniocytes derived from multiple patients are marked by heterogeneity and variability in expression levels of pluripotency markers. Clonal analysis from multiple patients indicates that amniocytes have large pools of self-renewing cells that have an inherent property to give rise to a distinct amniocyte phenotype with a heterogeneity of pluripotent markers. Significant to their therapeutic potential, genome-wide profiles are distinct at different gestational ages and times in culture, but do not differ between genders. Based on hierarchical clustering and differential expression analyses of the entire transcriptome, amniocytes express canonical regulators associated with pluripotency and stem cell repression. Their profiles are distinct from human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs), and newborn foreskin fibroblasts. Amniocytes have a complex molecular signature, coexpressing trophoblastic, ectodermal, mesodermal, and endodermal cell-type-specific regulators. In contrast to the current view of the ground state of stem cells, ESCs and iPSCs also express high levels of a wide range of cell-type-specific regulators. The coexpression of multilineage differentiation markers combined with the strong expression of a subset of ES cell repressors in amniocytes suggests that these cells have a distinct phenotype that is unlike any other known cell-type or lineage.


Assuntos
Líquido Amniótico/citologia , Genoma Humano/genética , Células-Tronco/metabolismo , Antígenos de Superfície/metabolismo , Biomarcadores/metabolismo , Linhagem da Célula/genética , Separação Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Idade Gestacional , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Fenótipo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcriptoma/genética
4.
Mol Cell Biol ; 32(24): 5089-102, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23071090

RESUMO

Trabecular myocardium accounts for the majority of the ventricles during early cardiogenesis, but compact myocardium is the primary component at later developmental stages. Elucidation of the genes regulating compact myocardium development is essential to increase our understanding of left ventricular noncompaction (LVNC), a cardiomyopathy characterized by increased ratios of trabecular to compact myocardium. 14-3-3ε is an adapter protein expressed in the lateral plate mesoderm, but its in vivo cardiac functions remain to be defined. Here we show that 14-3-3ε is expressed in the developing mouse heart as well as in cardiomyocytes. 14-3-3ε deletion did not appear to induce compensation by other 14-3-3 isoforms but led to ventricular noncompaction, with features similar to LVNC, resulting from a selective reduction in compact myocardium thickness. Abnormal compaction derived from a 50% decrease in cardiac proliferation as a result of a reduced number of cardiomyocytes in G(2)/M and the accumulation of cardiomyocytes in the G(0)/G(1) phase of the cell cycle. These defects originated from downregulation of cyclin E1 and upregulation of p27(Kip1), possibly through both transcriptional and posttranslational mechanisms. Our work shows that 14-3-3ε regulates cardiogenesis and growth of the compact ventricular myocardium by modulating the cardiomyocyte cell cycle via both cyclin E1 and p27(Kip1). These data are consistent with the long-held view that human LVNC may result from compaction arrest, and they implicate 14-3-3ε as a new candidate gene in congenital human cardiomyopathies.


Assuntos
Proteínas 14-3-3/metabolismo , Cardiopatias Congênitas/embriologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas 14-3-3/deficiência , Proteínas 14-3-3/genética , Animais , Sequência de Bases , Ciclo Celular/fisiologia , Ciclina D1/metabolismo , Ciclina E/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Primers do DNA/genética , Modelos Animais de Doenças , Feminino , Coração Fetal/anormalidades , Coração Fetal/embriologia , Coração Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Ventrículos do Coração/anormalidades , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas Oncogênicas/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 31(10): 2193-202, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21757658

RESUMO

OBJECTIVE: The investment of newly formed endothelial cell tubes with differentiated smooth muscle cells (SMC) is critical for appropriate vessel formation, but the underlying mechanisms remain unknown. We previously showed that depletion of focal adhesion kinase (FAK) in the nkx2.5 expression domain led to aberrant outflow tract (OFT) morphogenesis and strove herein to determine the cell types and mechanisms involved. METHODS AND RESULTS: We crossed fak(loxp) targeted mice with available Cre drivers to deplete FAK in OFT SMC (FAK(wnt) and FAK(nk)) or coronary SMC (FAK(cSMC)). In each case, depletion of FAK led to defective vasculogenesis that was incompatible with postnatal life. Immunohistochemical analysis of the mutant vascular structures revealed that FAK was not required for progenitor cell proliferation, survival, or differentiation into SMC but was necessary for subsequent SMC recruitment to developing vasculature. Using a novel FAK-null SMC culture model, we found that depletion of FAK did not influence SMC growth or survival, but blocked directional SMC motility and invasion toward the potent endothelial-derived chemokine, platelet-derived growth factor PDGFBB. FAK depletion resulted in unstable lamellipodial protrusions due to defective spatial-temporal activation of the small GTPase, Rac-1, and lack of Rac1-dependent recruitment of cortactin (an actin stabilizing protein) to the leading edge. Moreover, FAK null SMC exhibited a significant reduction in stimulated extracellular matrix degradation. CONCLUSIONS: FAK drives PDGFBB-stimulated SMC chemotaxis/invasion and is essential for SMC to appropriately populate the aorticopulmonary septum and the coronary vascular plexus.


Assuntos
Quimiotaxia , Quinase 1 de Adesão Focal/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Neovascularização Fisiológica , Animais , Aorta/embriologia , Aorta/enzimologia , Apoptose , Becaplermina , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Quimiotaxia/genética , Vasos Coronários/embriologia , Vasos Coronários/enzimologia , Cortactina/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Quinase 1 de Adesão Focal/deficiência , Quinase 1 de Adesão Focal/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/embriologia , Neovascularização Fisiológica/genética , Neuropeptídeos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis , Pseudópodes/enzimologia , Artéria Pulmonar/embriologia , Artéria Pulmonar/enzimologia , Codorniz/embriologia , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
6.
J Am Coll Cardiol ; 42(5): 942-51, 2003 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-12957447

RESUMO

OBJECTIVES: We sought to characterize an animal model of the Wolff-Parkinson-White (WPW) syndrome to help elucidate the mechanisms of accessory pathway formation. BACKGROUND: Patients with mutations in PRKAG2 manifest cardiac hypertrophy and ventricular pre-excitation; however, the mechanisms underlying the development and conduction of accessory pathways remain unknown. METHODS: We created transgenic mice overexpressing either the Asn488Ile mutant (TG(N488I)) or wild-type (TG(WT)) human PRKAG2 complementary deoxyribonucleic acid under a cardiac-specific promoter. Both groups of transgenic mice underwent intracardiac electrophysiologic, electrocardiographic (ECG), and histologic analyses. RESULTS: On the ECG, approximately 50% of TG(N488I) mice displayed sinus bradycardia and features suggestive of pre-excitation, not seen in TG(WT) mice. The electrophysiologic studies revealed a distinct atrioventricular (AV) connection apart from the AV node, using programmed stimulation. In TG(N488I) mice with pre-excitation, procainamide blocked bypass tract conduction, whereas adenosine infusion caused AV block in TG(WT) mice but not TG(N488I) mice with pre-excitation. Serial ECGs in 16 mice pups revealed no differences at birth. After one week, two of eight TG(N488I) pups had ECG features of pre-excitation, increasing to seven of eight pups by week 4. By nine weeks, one TG(N488I) mouse with WPW syndrome lost this phenotype, whereas TG(WT) pups never developed pre-excitation. Histologic investigation revealed postnatal development of myocardial connections through the annulus fibrosum of the AV valves in young TG(N488I) but not TG(WT) mice. CONCLUSIONS: Transgenic mice overexpressing the Asn488Ile PRKAG2 mutation recapitulate an electrophysiologic phenotype similar to humans with this mutation. This includes procainamide-sensitive, adenosine-resistant accessory pathways induced in postnatal life that may rarely disappear later in life.


Assuntos
Cardiomegalia/genética , Modelos Animais de Doenças , Complexos Multienzimáticos/genética , Mutação de Sentido Incorreto/genética , Síndromes de Pré-Excitação/diagnóstico , Síndromes de Pré-Excitação/genética , Proteínas Serina-Treonina Quinases/genética , Disfunção Ventricular/diagnóstico , Disfunção Ventricular/genética , Síndrome de Wolff-Parkinson-White/genética , Proteínas Quinases Ativadas por AMP , Adenosina , Fatores Etários , Animais , Antiarrítmicos , Biópsia , Cardiomegalia/complicações , Cardiomegalia/patologia , Progressão da Doença , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas/métodos , Eletrofisiologia , Genótipo , Sistema de Condução Cardíaco , Camundongos , Camundongos Transgênicos , Fenótipo , Procainamida , Método Simples-Cego , Síndrome de Wolff-Parkinson-White/complicações , Síndrome de Wolff-Parkinson-White/patologia
7.
J Mol Cell Cardiol ; 35(3): 243-56, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12676539

RESUMO

Nkx2.5, an evolutionarily conserved homeodomain containing transcription factor, is one of the earliest cardiogenic markers. Although its expression continues through adulthood, its function in adult cardiomyocytes is not well understood. To examine the effect of Nkx2.5 in terminal differentiated postnatal cardiomyocytes, we generated transgenic mice expressing either wild-type Nkx2.5 (TG-wild), a putative transcriptionally active mutant (carboxyl-terminus deletion mutant: TG-DeltaC) or a DNA non-binding point mutant of Nkx2.5 (TG-I183P) under alpha-myosin heavy chain promoter. Most TG-wild and TG-DeltaC mice died before 4 months of age with heart failure associated with conduction abnormalities. Cardiomyocytes expressing wild-type Nkx2.5 or a putative transcriptionally active mutant (DeltaC) had dramatically reduced expression of connexin 43 and changed sarcomere structure. Wild-type Nkx2.5 adenovirus-infected adult cardiomyocytes demonstrated connexin 43 downregulation as early as 16 h after infection, indicating that connexin 43 downregulation is due to Nkx2.5 overexpression but not due to heart failure phenotype in vivo. These studies indicate that overexpression of Nkx2.5 in terminally differentiated cardiomyocytes dramatically alters cardiac cell structure and function.


Assuntos
Conexina 43/metabolismo , Coração/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Sarcômeros/ultraestrutura , Fatores de Transcrição , Adenoviridae/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Conexina 43/genética , Eletrocardiografia , Feminino , Vetores Genéticos/metabolismo , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/patologia , Plasmídeos/genética , Ratos , Sarcômeros/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 282(2): H445-56, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11788391

RESUMO

Acetylcholine released on parasympathetic stimulation slows heart rate through activation of muscarinic receptors on the sinus nodal cells and subsequent opening of the atrial muscarinic potassium channel (K(ACh)). K(ACh) is directly activated by G protein betagamma-subunits. To elucidate the physiological role of Gbetagamma for the regulation of heart rate and electrophysiological function in vivo, we created transgenic mice with a reduced amount of membrane-bound Gbeta protein by overexpressing nonprenylated Ggamma(2)-subunits in their hearts using the alpha-myosin heavy chain promoter. At baseline and after muscarinic stimulation with carbachol, heart rate and heart rate variability were determined with electrocardiogram telemetry in conscious mice and in vivo intracardiac electrophysiological studies in anesthetized mice. Reduction of the amount of functional Gbetagamma protein by >50% caused a pronounced blunting of the carbachol-induced bradycardia as well as the increases in time- and frequency-domain indexes of heart rate variability and baroreflex sensitivity that were observed in wild types. In addition, sinus node recovery time and inducibility of atrial arrhythmias were reduced in transgenic mice. Our data demonstrate in vivo that Gbetagamma plays a crucial role for parasympathetic heart rate control, sinus node automaticity, and atrial arrhythmia vulnerability.


Assuntos
Frequência Cardíaca/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/genética , Sistema Nervoso Parassimpático/fisiopatologia , Nó Sinoatrial/fisiologia , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/fisiopatologia , Atropina/farmacologia , Cardiotônicos/farmacologia , Membrana Celular/metabolismo , Colforsina/farmacologia , Estado de Consciência , AMP Cíclico/farmacologia , Citosol/metabolismo , Eletrocardiografia , Eletrofisiologia , Expressão Gênica/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Propranolol/farmacologia , Transgenes/fisiologia , Nervo Vago/fisiopatologia , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA