Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 10(11): e035942, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33444170

RESUMO

OBJECTIVE: To evaluate sex-specific and age-specific associations of active living environments (ALEs) with premature cardiometabolic mortality. DESIGN: Population-based retrospective cohort study. SETTING: Residential neighbourhoods (1000-metre circular buffers from the centroids of dissemination areas) across Canada for which the Canadian ALE Measure was derived, based on intersection density, points of interest and dwelling density. PARTICIPANTS: 249 420 survey respondents from an individual-level record linkage between the Canadian Community Health Survey (2000-2010) and the Canadian Mortality Database until 2011, comprised of older women (65-85 years), older men (65-81 years), middle-aged women (45-64 years) and middle-aged men (45-64 years). PRIMARY OUTCOME MEASURES: Premature cardiometabolic mortality and average daily energy expenditure attributable to walking. Multivariable proportional hazards regression models were adjusted for age, educational attainment, dissemination area-level median income, smoking status, obesity, the presence of chronic conditions, season of survey response and survey cycle. RESULTS: Survey respondents contributed a total of 1 451 913 person-years. Greater walking was observed in more favourable ALEs. Walking was associated with lower cardiometabolic death in all groups except for middle-aged men. Favourable ALEs conferred a 22% reduction in death from cardiometabolic causes (HR 0.78, 95% CI 0.63 to 0.97) for older women. CONCLUSIONS: On average, people walk more in favourable ALEs, regardless of sex and age. With the exception of middle-aged men, walking is associated with lower premature cardiometabolic death. Older women living in neighbourhoods that favour active living live longer.


Assuntos
Doenças Cardiovasculares , Mortalidade Prematura , Idoso , Idoso de 80 Anos ou mais , Canadá/epidemiologia , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Características de Residência , Estudos Retrospectivos , Fatores de Risco
2.
Exp Hematol ; 43(10): 858-868.e7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26163797

RESUMO

A precise understanding of the role of miR-223 in human hematopoiesis and in the pathogenesis of acute myeloid leukemia (AML) is still lacking. By measuring miR-223 expression in blasts from 115 AML patients, we found significantly higher miR-223 levels in patients with favorable prognosis, whereas patients with low miR-223 expression levels were associated with worse outcome. Furthermore, miR-223 was hierarchically expressed in AML subpopulations, with lower expression in leukemic stem cell-containing fractions. Genetic depletion of miR-223 decreased the leukemia initiating cell (LIC) frequency in a myelomonocytic AML mouse model, but it was not mandatory for rapid-onset AML. To relate these observations to physiologic myeloid differentiation, we knocked down or ectopically expressed miR-223 in cord-blood CD34⁺ cells using lentiviral vectors. Although miR-223 knockdown delayed myeloerythroid precursor differentiation in vitro, it increased myeloid progenitors in vivo following serial xenotransplantation. Ectopic miR-223 expression increased erythropoiesis, T lymphopoiesis, and early B lymphopoiesis in vivo. These findings broaden the role of miR-223 as a regulator of the expansion/differentiation equilibrium in hematopoietic stem and progenitor cells where its impact is dose- and differentiation-stage-dependent. This also explains the complex yet minor role of miR-223 in AML, a heterogeneous disease with variable degree of myeloid differentiation.


Assuntos
Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/biossíntese , Neoplasias Experimentais/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Neoplásico/biossíntese , Adulto , Animais , Proliferação de Células/genética , Eritropoese/genética , Feminino , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linfopoese/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , MicroRNAs/genética , Pessoa de Meia-Idade , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Células-Tronco Neoplásicas/patologia , RNA Neoplásico/genética
3.
Genome Res ; 24(7): 1064-74, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24709820

RESUMO

Integrating the genotype with epigenetic marks holds the promise of better understanding the biology that underlies the complex interactions of inherited and environmental components that define the developmental origins of a range of disorders. The quality of the in utero environment significantly influences health over the lifecourse. Epigenetics, and in particular DNA methylation marks, have been postulated as a mechanism for the enduring effects of the prenatal environment. Accordingly, neonate methylomes contain molecular memory of the individual in utero experience. However, interindividual variation in methylation can also be a consequence of DNA sequence polymorphisms that result in methylation quantitative trait loci (methQTLs) and, potentially, the interaction between fixed genetic variation and environmental influences. We surveyed the genotypes and DNA methylomes of 237 neonates and found 1423 punctuate regions of the methylome that were highly variable across individuals, termed variably methylated regions (VMRs), against a backdrop of homogeneity. MethQTLs were readily detected in neonatal methylomes, and genotype alone best explained ∼25% of the VMRs. We found that the best explanation for 75% of VMRs was the interaction of genotype with different in utero environments, including maternal smoking, maternal depression, maternal BMI, infant birth weight, gestational age, and birth order. Our study sheds new light on the complex relationship between biological inheritance as represented by genotype and individual prenatal experience and suggests the importance of considering both fixed genetic variation and environmental factors in interpreting epigenetic variation.


Assuntos
Metilação de DNA , Meio Ambiente , Epigênese Genética , Interação Gene-Ambiente , Heterogeneidade Genética , Genótipo , Transcriptoma , Biologia Computacional/métodos , Ilhas de CpG , Epigenômica/métodos , Feminino , Humanos , Recém-Nascido , Masculino , Polimorfismo de Nucleotídeo Único , Gravidez , Locos de Características Quantitativas , Fatores de Risco
4.
Blood ; 118(12): 3350-8, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21628414

RESUMO

Processing of pre-miRNA through Dicer1 generates an miRNA duplex that consists of an miRNA and miRNA* strand. Despite the general view that miRNA*s have no functional role, we further investigated miRNA* species in 10 deep-sequencing libraries from mouse and human tissue. Comparisons of miRNA/miRNA* ratios across the miRNA sequence libraries revealed that 50% of the investigated miRNA duplexes exhibited a highly dominant strand. Conversely, 10% of miRNA duplexes showed a comparable expression of both strands, whereas the remaining 40% exhibited variable ratios across the examined libraries, as exemplified by miR-223/miR-223* in murine and human cell lines. Functional analyses revealed a regulatory role for miR-223* in myeloid progenitor cells, which implies an active role for both arms of the miR-223 duplex. This was further underscored by the demonstration that miR-223 and miR-223* targeted the insulin-like growth factor 1 receptor/phosphatidylinositol 3-kinase axis and that high miR-223* levels were associated with increased overall survival in patients with acute myeloid leukemia. Thus, we found a supporting role for miR-223* in differentiating myeloid cells in normal and leukemic cell states. The fact that the miR-223 duplex acts through both arms extends the complexity of miRNA-directed gene regulation of this myeloid key miRNA.


Assuntos
RNA Helicases DEAD-box/metabolismo , Leucemia Mieloide Aguda/genética , MicroRNAs , Células Progenitoras Mieloides/metabolismo , Hibridização de Ácido Nucleico/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Ribonuclease III/metabolismo , Transdução de Sinais , Adolescente , Adulto , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/genética , DNA Complementar/análise , DNA Complementar/biossíntese , Genes Reporter , Vetores Genéticos , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Luciferases/análise , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Células Progenitoras Mieloides/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/genética , Receptores de Superfície Celular/genética , Retroviridae , Ribonuclease III/genética , Transdução de Sinais/genética , Bibliotecas de Moléculas Pequenas/análise , Taxa de Sobrevida , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA