RESUMO
Inhibitor of growth 4 and 5 (ING4, ING5) are structurally similar chromatin-binding proteins in the KAT6A, KAT6B and KAT7 histone acetyltransferase protein complexes. Heterozygous mutations in the KAT6A or KAT6B gene cause human disorders with cardiac defects, but the contribution of their chromatin-adaptor proteins to development is unknown. We found that Ing5-/- mice had isolated cardiac ventricular septal defects. Ing4-/-Ing5-/- embryos failed to undergo chorioallantoic fusion and arrested in development at embryonic day 8.5, displaying loss of histone H3 lysine 14 acetylation, reduction in H3 lysine 23 acetylation levels and reduced developmental gene expression. Embryonic day 12.5 Ing4+/-Ing5-/- hearts showed a paucity of epicardial cells and epicardium-derived cells, failure of myocardium compaction, and coronary vasculature defects, accompanied by reduced expression of epicardium genes. Cell adhesion gene expression and proepicardium outgrowth were defective in the ING4- and ING5-deficient state. Our findings suggest that ING4 and ING5 are essential for heart development and promote epicardium and epicardium-derived cell fates and imply mutation of the human ING5 gene as a possible cause of isolated ventricular septal defects.
Assuntos
Proteínas de Transporte , Comunicação Interventricular , Lisina , Humanos , Animais , Camundongos , Linhagem da Célula , Histonas , Acetilação , Cromatina , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas de Homeodomínio/genética , Proteínas de Ciclo Celular , Histona AcetiltransferasesRESUMO
ING5 is a component of KAT6A and KAT7 histone lysine acetylation protein complexes. ING5 contains a PHD domain that binds to histone H3 lysine 4 when it is trimethylated, and so functions as a 'reader' and adaptor protein. KAT6A and KAT7 function are critical for normal hematopoiesis. To examine the function of ING5 in hematopoiesis, we generated a null allele of Ing5. Mice lacking ING5 during development had decreased foetal liver cellularity, decreased numbers of hematopoietic stem cells and perturbed erythropoiesis compared to wild-type control mice. Ing5-/- pups had hypoplastic spleens. Competitive transplantation experiments using foetal liver hematopoietic cells showed that there was no defect in long-term repopulating capacity of stem cells lacking ING5, suggesting that the defects during the foetal stage were not cell intrinsic. Together, these results suggest that ING5 function is dispensable for normal hematopoiesis but may be required for timely foetal hematopoiesis in a cell-extrinsic manner.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Fatores de Transcrição , Proteínas Supressoras de Tumor , Animais , Camundongos , Contagem de Células , Cromatina/genética , Fígado , Lisina , Proteínas Supressoras de Tumor/genética , Fatores de Transcrição/genéticaRESUMO
Human mesenchymal stem cell (hMSC) therapy offers significant potential for osteochondral regeneration. Such applications require their ex vivo expansion in media frequently supplemented with fibroblast growth factor 2 (FGF2). Particular heparan sulfate (HS) fractions stabilize FGF2-FGF receptor complexes. We show that an FGF2-binding HS variant (HS8) accelerates the expansion of freshly isolated bone marrow hMSCs without compromising their naivety. Importantly, the repair of osteochondral defects in both rats and pigs is improved after treatment with HS8-supplemented hMSCs (MSCHS8), when assessed histologically, biomechanically, or by MRI. Thus, supplementing hMSC culture media with an HS variant that targets endogenously produced FGF2 allows the elimination of exogenous growth factors that may adversely affect their therapeutic potency.
Assuntos
Glicosaminoglicanos/administração & dosagem , Transplante de Células-Tronco , Animais , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Relação Dose-Resposta a Droga , Expressão Gênica , Perfilação da Expressão Gênica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Homeostase do Telômero/efeitos dos fármacosRESUMO
PTEN was discovered as a membrane-associated tumor suppressor protein nearly two decades ago, but the concept that it can be secreted and taken up by recipient cells is revolutionary. Since then, various laboratories have reported that PTEN is indeed secreted and available for uptake by other cells in at least two different guises. First, PTEN may be packaged and exported within extracellular vesicles (EV) called exosomes. Second, PTEN may also be secreted as a naked protein in a longer isoform called PTEN-long. While the conditions favouring the secretion of PTEN-long remain unknown, PTEN secretion in exosomes is enhanced by the Ndfip1/Nedd4 ubiquitination system. In this report, we describe conditions for packaging PTEN in exosomes and their potential use for mediating non cell-autonomous functions in recipient cells. We suggest that this mode of PTEN transfer may potentially provide beneficial PTEN for tumor suppression, however it may also propagate deleterious versions of mutated PTEN causing tumorigenesis.