Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1620, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238404

RESUMO

The microbial biotransformation using low-cost feedstock to produce biopolymers (degradable), an alternative to petrochemical-based synthesis plastics (non-degradable), can be a beneficial approach towards sustainable development. In this study, the dairy industry processes waste (whey) is used in polyhydroxyalkanoate (PHA) copolymer production. Initial screening suggested that Ralstonia eutropha produced higher PHA as compared to Bacillus megaterium. A central composite rotatable design-based optimization using two process variables (amino acid and tween-80) concentration remarkably influenced PHA co-polymer production under physiological conditions of pH (7), temperature (37 °C), and agitation rate of 150 rpm. High polyhydroxybutyrate (PHB) mass fraction yield of 69.3% was observed as compared to predicted yield of 62.8% from deproteinized whey as feed. The combination of tryptophan (50 mg L-1) and tween-80 (3 mL-1) enhanced R. eutropha mass gain to 6.80 g L-1 with PHB contents of 4.71 g L-1. Further, characterization of PHA and its copolymers was done by ESI-MS, FTIR, and TEM. On upscaling up to 3.0 L, the PHA contents and yields were noted as quite similar by R. eutropha. This study demonstrates that dairy waste processing waste can be potentially utilized as inexpensive feed for producing high content of biopolymers to develop a sustainable system of waste management.


Assuntos
Poli-Hidroxialcanoatos , Polissorbatos , Poli-Hidroxialcanoatos/química , Biopolímeros , Aminoácidos , Plásticos
2.
J Food Sci Technol ; 60(11): 2748-2760, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37711577

RESUMO

Barnyard millet (Echinochloa species) has received appreciable attention for its susceptibility to biotic and abiotic stresses, multiple harvests in a year and rich in micronutrients, fibers and phytochemicals. It is believed that the consumption of barnyard millet can possess various health benefits against diabetes, cardiovascular diseases, obesity, skin problems, cancer and celiac disease. The flour of barnyard millet is gluten-free and can be incorporated into the diet of celiac and diabetic patients. Considering the nutritional value of millet, various millet-based food products like bread, snack, baby foods, millet wine, porridge, fast foods and millet nutrition powder can be prepared. Future research and developments on barnyard millet and its products may help cope with various diseases known to humans. This paper discusses barnyard millet's nutritional and health benefits as whole grain and its value-added products. The paper also provides insights into the processing of barnyard millet and its effect on the functional properties and, future uses of barnyard millet in the field food industry as ready-to-cook and ready-to-eat products as well as in industrial uses, acting as a potential future crop contributing to food and nutritional security.

3.
Oxid Med Cell Longev ; 2022: 2451733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720184

RESUMO

The prevalence of viral infections, cancer, and diabetes is increasing at an alarming rate around the world, and these diseases are now considered to be the most serious risks to human well-being in the modern period. There is a widespread practice in Asian countries of using papaya leaves (C. papaya L.) as herbal medicine, either alone or in combination with prescribed medications, to treat a variety of ailments. The importance of conducting the necessary descriptive studies in order to determine the safety of papaya leaf consumption is also emphasized in the context of their application in the healthcare sector. Electronic databases such as Google Scholar, Scopus, and PubMed were used to gather information on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The literature was gathered from publications on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The antidengue, anticancer, antidiabetic, neuroprotective, and anti-inflammatory effects of papaya leaves discussed in this article are supported by evidence from preclinical, in vivo, in vitro, and clinical trial studies, as well as from other sources. Leaves have been investigated for their mechanism of action as well as their potential to be used in the development of novel herbal products for the health business. According to the reports gathered, only a small number of research demonstrated that leaf extract at high concentrations was hazardous to certain organs. The collective literature reviewed in this review provides insights into the use of papaya leaves as a cure for epidemic diseases, highlighting the phytochemical composition and pharmacological attributes of papaya leaves, as well as the results of various preclinical and clinical studies that have been conducted so far on the subject. The review clearly demonstrates the successful medical evidence for the use of papaya leaf extracts in the healthcare system as a supplemental herbal medication in a variety of clinical settings.


Assuntos
Carica , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carica/química , Humanos , Compostos Fitoquímicos , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta
4.
Phytother Res ; 35(11): 6010-6029, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34237796

RESUMO

Marijuana, or Cannabis sativa L., is a common psychoactive plant used for both recreational and medicinal purposes. In many countries, cannabis-based medicines have been legalized under certain conditions because of their immense prospects in medicinal applications. With a comprehensive insight into the prospects and challenges associated with the pharmacological use and global trade of C. sativa, this mini-review focuses on the medicinal importance of the plant and its legal status worldwide; the pharmacological compounds and its therapeutic potential along with the underlying public health concerns and future perspective are herein discussed. The existence of major compounds including Δ9 -tetrahydrocannabinol (Δ9 -THC), cannabidiol, cannabinol, and cannabichromene contributes to the medicinal effects of the cannabis plant. These compounds are also involved in the treatment of various types of cancer, epilepsy, and Parkinson's disease displaying several mechanisms of action. Cannabis sativa is a plant with significant pharmacological potential. However, several aspects of the plant need an in-depth understanding of the drug mechanism and its interaction with other drugs. Only after addressing these health concerns, legalization of cannabis could be utilized to its full potential as a future medicine.


Assuntos
Canabidiol , Cannabis , Canabidiol/farmacologia , Dronabinol
5.
Toxins (Basel) ; 13(2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530606

RESUMO

Mycotoxins represent an assorted range of secondary fungal metabolites that extensively occur in numerous food and feed ingredients at any stage during pre- and post-harvest conditions. Zearalenone (ZEN), a mycotoxin categorized as a xenoestrogen poses structural similarity with natural estrogens that enables its binding to the estrogen receptors leading to hormonal misbalance and numerous reproductive diseases. ZEN is mainly found in crops belonging to temperate regions, primarily in maize and other cereal crops that form an important part of various food and feed. Because of the significant adverse effects of ZEN on both human and animal, there is an alarming need for effective detection, mitigation, and management strategies to assure food and feed safety and security. The present review tends to provide an updated overview of the different sources, occurrence and biosynthetic mechanisms of ZEN in various food and feed. It also provides insight to its harmful effects on human health and agriculture along with its effective detection, management, and control strategies.


Assuntos
Ração Animal/microbiologia , Grão Comestível/microbiologia , Microbiologia de Alimentos , Fungos/metabolismo , Zearalenona/efeitos adversos , Animais , Proteção de Cultivos , Humanos , Medição de Risco , Metabolismo Secundário , Zearalenona/análise
6.
Toxicon ; 187: 151-162, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32889024

RESUMO

Ochratoxins (OTs) are a group of mycotoxins produced by Aspergillus and Penicillium spp. which are ubiquitous. They infect the crops during pre- and post-harvest conditions and contaminate various food and feed. Among all the OTs produced, ochratoxin A (OTA) poses serious health issues like neurotoxicity and carcinogenesis. The harmful impact of the toxins is observed in both humans and animals. The toxins get accumulated in the organs of animals through the contaminated animal-feed which further contaminate the products derived from them, such as milk and meat-based products. Therefore, sensitive and robust identification, detection, and quantification methods along with efficient management and control measures are crucial. Spectrometric and spectroscopy techniques are quite sensitive and lead to better detection of the toxin in the food products. Control and preventive measures during harvesting, storage and transportation are found to be effective in managing the production of such toxins. This review insight on the occurrence, chemistry, biosynthesis, effects on human health and agriculture, detections, management, and control strategies of ochratoxins.


Assuntos
Ração Animal , Exposição Dietética/estatística & dados numéricos , Contaminação de Alimentos/estatística & dados numéricos , Microbiologia de Alimentos , Ocratoxinas/análise , Animais , Aspergillus , Humanos , Penicillium
7.
Plants (Basel) ; 9(3)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168877

RESUMO

Citrus is a genus belonging to the Rutaceae family and includes important crops like orange, lemons, pummelos, grapefruits, limes, etc. Citrus essential oils (CEOs) consist of some major biologically active compounds like α-/ß-pinene, sabinene, ß-myrcene, d-limonene, linalool, α-humulene, and α-terpineol belonging to the monoterpenes, monoterpene aldehyde/alcohol, and sesquiterpenes group, respectively. These compounds possess several health beneficial properties like antioxidant, anti-inflammatory, anticancer, etc., in addition to antimicrobial properties, which have immense potential for food applications. Therefore, this review focused on the extraction, purification, and detection methods of CEOs along with their applications for food safety, packaging, and preservation. Further, the concerns of optimum dose and safe limits, their interaction effects with various food matrices and packaging materials, and possible allergic reactions associated with the use of CEOs in food applications were briefly discussed, which needs to be addressed in future research along with efficient, affordable, and "green" extraction methods to ensure CEOs as an ecofriendly, cost-effective, and natural alternative to synthetic chemical preservatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA