Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17208, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060430

RESUMO

We analyzed the effects of foliar spraying with amino acids, chitosan (CHS) and nanocomposites (NCs) of chitosan with the amino acids proline, L-cysteine and glycine betaine (CHS-Pro NCs; CHS-Cys NCs, CHS-GB NCs, respectively) on the changes in the physiological and biochemical parameters of iceberg lettuce grown at the control temperature (20 °C) and under chilling conditions (4 °C). The physicochemical parameters of the phospholipid monolayers (PLs) extracted from plants showed the effects of the treatments on the properties of the monolayers, namely, the packing density and flexibility. We observed increased accumulation of proline at 4 °C, and differences in the concentrations of sugars in most of the analyzed variants were a consequence of the lowered temperature and/or the use of organic compounds. A temperature of 4 °C caused a significant increase in the L-ascorbic acid level compared with that at 20 °C. Differences were also found in glutathione (GSH) content depending on the temperature and treatment with the tested organic compounds. CHS NCs loaded with Pro and GB were effective at increasing the amount of phenols under stress temperature conditions. We noted that a significant increase in the antioxidant activity of plants at 4 °C occurred after priming with Cys, CHS-Cys NCs, Pro and CHS-Pro NCs, and the CHS nanocomposites were more effective in this respect. Both low-temperature stress and foliar spraying of lettuce with various organic compounds caused changes in the activity of antioxidant enzymes. Two forms of dismutase (SOD), iron superoxide dismutase (FeSOD) and copper/zinc superoxide dismutase (Cu/ZnSOD), were identified in extracts from the leaves of iceberg lettuce seedlings. The application of the tested organic compounds, alone or in combination with CHS, increased the amount of malondialdehyde (MDA) in plants grown under controlled temperature conditions. Chilling caused an increase in the content of MDA, but some organic compounds mitigated the impact of low temperature. Compared with that of plants subjected to 20 °C, the fresh weight of plants exposed to chilling decreased. However, the tested compounds caused a decrease in fresh weight at 4 °C compared with the corresponding control samples. An interesting exception was the use of Cys, for which the difference in the fresh weight of plants grown at 20 °C and 4 °C was not statistically significant. After Cys application, the dry weight of the chilled plants was greater than that of the chilled control plants but was also greater than that of the other treated plants in this group. To our knowledge, this is the first report demonstrating that engineered chitosan-amino acid nanocomposites could be applied as innovative protective agents to mitigate the effects of chilling stress in crop plants.


Assuntos
Aminoácidos , Quitosana , Lactuca , Nanocompostos , Lactuca/efeitos dos fármacos , Lactuca/metabolismo , Lactuca/crescimento & desenvolvimento , Nanocompostos/química , Quitosana/química , Aminoácidos/metabolismo , Aminoácidos/química , Estresse Fisiológico/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Temperatura , Antioxidantes/metabolismo , Cisteína/metabolismo , Cisteína/química , Prolina/metabolismo , Glutationa/metabolismo
2.
Int J Biol Macromol ; 253(Pt 3): 126805, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37689291

RESUMO

The magnetic nanocarriers containing chitosan/hyaluronic acid complexed with κ-carrageenan were synthesized by solution method, as the drug delivery system. Doxorubicin (DOX) was used as the model drug. Characterization assessments were performed to identify the functional groups, determine the structure and morphology, and magnetic properties of nanodelivery system. Furthermore, their impacts on MCF-7 and MDA-MB-237 cell lines were evaluated by MTT assay. Analyses confirm polymers physical interaction, chemical bonding in the structure, moreover presence of spherical shape magnetic nanoparticles in the 100-150 nm range. The DOX loading was 74.1 ± 2.5 %. Results indicate that the drug loading was raised to 83.0±2.2 % by increasing the amount of κ-carrageenan in specimens. The swelling of samples in the acidic environment (e.g. pH 5.5) was verified by the Dynamic Light Scattering analysis. Consequently, pH stimulus-responsive drug release in the sustained stream and a considerable amount of DOX release (84±3.1 %) was detected as compared to a higher pH medium (27±1.5 % at pH 7.4). According to the MTT assay results, MNPs showed no inhibitory effect on both cell lines. Also, 10 and 15 µg/ml of MNPs-DOX was considered as IC50 value on MDA-MB-237 and MCF-7 cells, respectively. The DOX 25 µg/ml caused 50 % antiproliferative activity in both cell lines.


Assuntos
Quitosana , Nanopartículas , Humanos , Quitosana/química , Carragenina , Ácido Hialurônico , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Fenômenos Magnéticos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio
3.
Int J Biol Macromol ; 242(Pt 3): 124923, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211072

RESUMO

Advances in the nanotechnology fields provided crucial applications in plant sciences, contributing to the plant performance and health under stress and stress-free conditions. Amid the applications, selenium (Se), chitosan and their conjugated forms as nanoparticles (Se-CS NPs) have been revealed to have potential of alleviating the harmful effects of the stress on several crops and subsequently enhancing the growth and productivity. The present study was addressed to assay the potential effects of Se-CS NPs in reversing or buffering the harmful effects of salt stress on growth, photosynthesis, nutrient concentration, antioxidant system and defence transcript levels in bitter melon )Momordica charantia(. In addition, some secondary metabolite-related genes were explicitly examined. In this regard, the transcriptional levels of WRKY1, SOS1, PM H+-ATPase, SKOR, Mc5PTase7, SOAR1, MAP30, α-MMC, polypeptide-P and PAL were quantified. Our results demonstrated that Se-CS NPs increased growth parameters, photosynthesis parameters (SPAD, Fv/Fm, Y(II)), antioxidant enzymatic activity (POD, SOD, CAT) and nutrient homeostasis (Na+/K+, Ca2+, and Cl-) and induced the expression of genes in bitter melon plants under salt stress (p ≤ 0.05). Therefore, applying Se-CS NPs might be a simple and effective way of improving crop plants' overall health and yield under salt stress conditions.


Assuntos
Quitosana , Momordica charantia , Nanopartículas , Selênio , Selênio/farmacologia , Antioxidantes/farmacologia , Plântula , Quitosana/farmacologia , Estresse Salino
4.
Int J Biol Macromol ; 242(Pt 1): 124739, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148933

RESUMO

In this study, the magnetite nanoparticles were immobilized on the sepiolite needles via co-precipitation of iron ions. Then, the resulted magnetic sepiolite (mSep) nanoparticles were coated with chitosan biopolymer (Chito) in the presence of citric acid (CA) to prepare mSep@Chito core-shell drug nanocarriers (NCs). TEM images showed magnetic Fe3O4 nanoparticles with small sizes (less than 25 nm) on the sepiolite needles. Sunitinib anticancer drug loading efficiencies were ⁓45 and 83.7 % for the NCs with low and high content of Chito, respectively. The in-vitro drug release results exhibited that the mSep@Chito NCs have a sustained release behavior with high pH-dependent properties. Cytotoxic results (MTT assay) showed that the sunitinib-loaded mSep@Chito2 NC had a significant cytotoxic effect on the MCF-7 cell lines. Also, the in-vitro compatibility of erythrocytes, physiological stability, biodegradability, and antibacterial and antioxidant activities of NCs was evaluated. The results showed that the synthesized NCs had excellent hemocompatibility, good antioxidant properties, and were sufficiently stable and biocompatible. Based on the antibacterial data, the minimal inhibitory concentration (MIC) values for mSep@Chito1, mSep@Chito2, and mSep@Chito3 were obtained as 125, 62.5, and 31.2 µg/mL towards S. aureus, respectively. All in all, the prepared NCs could be potentially used as a pH-triggered system for biomedical applications.


Assuntos
Antineoplásicos , Quitosana , Nanopartículas de Magnetita , Humanos , Sunitinibe , Portadores de Fármacos , Ácido Cítrico , Antioxidantes , Staphylococcus aureus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fenômenos Magnéticos , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos
5.
Mater Sci Eng C Mater Biol Appl ; 124: 112042, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947542

RESUMO

This work aimed to design montmorillonite-incorporated pH-responsive and magnetic κ-carrageenan/chitosan hydrogels via a completely green route for controlled release of sunitinib anticancer drug. This was accomplished by ionic cross-linking of two biopolymers, κ-carrageenan and chitosan, in the presence of magnetic montmorillonite (mMMt) nanoplatelets. Interestingly, it was observed that the amount of mMMt affected not only the microstructure of hydrogels, but also the drug loading efficiency of nanocomposite hydrogels was noticeably increased by introducing mMMt (from 69 to 96%). The in vitro sunitinib release experiments showed that a low content of loaded sunitinib was released from all hydrogels in the buffered solution with pH 7.4. In contrast, a relatively sustained release with a high content of drug release was observed in the acidic solution of pH 5.5. During 48 h, the hydrogels nanocomposite containing a high content of mMMt showed cumulative release of 64.0 and 8.6% at pH 5.5 and 7.4, respectively. During two days, while the cumulative release of sunitinib was obtained 84.3% for the magnetic-free hydrogel, the magnetic ones showed 74.4 and 64% with the low and high contents of magnetic MMt, respectively. The developed κ-carrageenan/chitosan hydrogels with a high capacity of drug loading and subsequent pH-sensitive drug release can be considered in prolonged cancer therapy with reduced side effects.


Assuntos
Quitosana , Bentonita , Carragenina , Portadores de Fármacos , Liberação Controlada de Fármacos , Hidrogéis , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Nanogéis , Sunitinibe/farmacologia
6.
Carbohydr Polym ; 258: 117719, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33593581

RESUMO

This study reports developing novel smart drug delivery systems (DDS) that have great importance in anticancer therapeutics. The magnetic hydroxypropyl methylcellulose (mHPMC) synthesized via in situ method and introduced in the fabrication of tripolyphosphate (TPP)-cross-linked chitosan core-shell nano-carriers (mHPMC@Chitosan). The TPP-cross-linked mHPMC@Chitosan nano-carriers then characterized using TEM, SEM/EDS, DLS, XPS, FTIR, TGA, XRD, and VSM. The encapsulation efficiency showed high capacity of loading for sunitinib malate (above 86 % for all samples). At pH 7.4, the minimum content of drug release was observed for all samples fabricated with variable contents of chitosan. At pH 4.5, the effect of chitosan content revealed that the rate of sunitinib release tends to decrease as its content increased. During two days, 44 and 93 % of the loaded sunitinib released from carriers containing high and low contents of chitosan, respectively. Besides, this mHPMC@Chitosan core shell nano-carrier shown pH-sensitive drug release.

7.
Environ Sci Pollut Res Int ; 26(25): 26254-26264, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286369

RESUMO

In this study, magnetic bio-adsorbent based on chitosan with high molecular weight was prepared. To stabilize under acidic condition, the synthesized magnetic chitosan was cross-linked with κ-carrageenan (mChitoCar). The magnetic bio-adsorbent was characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results indicated that mChitoCar had desirable magnetic-sorption properties, and magnetic/bio-adsorbent was successfully synthesized and cross-linked. The present nanocomposite was applied to remove and immobilize Cd2+ from water and soil systems. Adsorption and desorption of cadmium by the chitosan bio-adsorbent were investigated using batch experiments. Isotherm data were described by using Freundlich, Langmuir, Dubinin-Radushkevich, and Temkin models, and better fitting was introduced by Freundlich model in both water and soil systems. The maximum adsorption capacity (b) of cadmium onto mChitoCar appeared to increase from the water system to the soil system, from 750.2 to 992.7 µmol/g, respectively. The adsorption mechanism with the help of potential theory indicates the adsorption of cadmium onto the mChitoCar surface is following chemical adsorption type. To evaluate the efficiency of the modified chitosan as a good bio-adsorbent in water and soil system, the difference between adsorption and desorption amounts, Δq, was calculated. By comparing the amounts of Δq, the bio-adsorbent is not economically feasible at high initial concentrations in the water system. But, the bio-adsorbent used can be relatively economic as a soil modifier.


Assuntos
Cádmio/isolamento & purificação , Carragenina/química , Quitosana/química , Poluentes do Solo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cádmio/química , Reagentes de Ligações Cruzadas/química , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Poluentes do Solo/química , Poluentes Químicos da Água/química , Difração de Raios X
8.
Mater Sci Eng C Mater Biol Appl ; 91: 705-714, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033305

RESUMO

The main objective of this work was to develop κ-carrageenan-crosslinked magnetic chitosan with different molecular weights as pH-responsive carriers for controlled release of anticancer drug sunitinib. The characterization of magnetic carriers revealed that the size of magnetic nanoparticles is affected by the molecular weight of chitosan. Drug encapsulation efficiency and release performance influenced by the size of magnetic nanoparticles. Encapsulation efficiencies of sunitinib by low, medium and high molecular weights of magnetic chitosan carriers were found to be 62.38, 69.57 and 78.42%, respectively. The in vitro sunitinib release from magnetic chitosan/κ-carrageenan carriers was pH-dependent and followed a Fickian release mechanism. Sunitinib was efficiently released from magnetic carriers into environment under acidic pHs and the release rate was size- and molecular weight-dependent. The pH-dependent release of sunitinib with a minimal release content at pH = 7.4 makes the present magnetic carriers as promising candidate for anticancer drugs with reduced side effects.


Assuntos
Antineoplásicos/farmacologia , Carragenina/química , Quitosana/química , Reagentes de Ligações Cruzadas/química , Indóis/farmacologia , Nanopartículas de Magnetita/química , Pirróis/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Sunitinibe , Propriedades de Superfície , Difração de Raios X
9.
Environ Sci Pollut Res Int ; 25(15): 14977-14988, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29550978

RESUMO

In this study, magnetic nanocomposite hydrogels based on polyvinyl alcohol were synthesized. Magnetic polyvinyl alcohol/laponite RD (PVA-mLap) nanocomposites were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results indicated that PVA-mLap had desirable magnetic-sorption properties and magnetic-laponite nanoparticles were successfully synthesized and added to polyvinyl alcohol. The present nanocomposites were applied to remove Cd2+ from aqueous solution. The influence of initial Cd2+ concentration, magnetic-laponite concentration, pH, and ionic strength on adsorption isotherm was investigated. Heterogeneity of adsorption sites was intensified by increasing magnetic concentration of adsorbents and by rising pH value. Results of ionic strength studies indicated that by increasing ionic strength more than four times, the adsorption of Cd2+ has only decreased around 15%. According to the results, the dominant mechanism of Cd2+ sorption by the present adsorbents was determined chemical and specific sorption. Therefore, the use of the present nanocomposites as a powerful adsorbent of Cd2+ in the wastewater treatment is suggested. Isotherm data were described by using Freundlich and Langmuir models, and better fitting was introduced Langmuir model.


Assuntos
Cádmio/química , Magnetismo , Nanocompostos/química , Álcool de Polivinil/química , Silicatos/química , Adsorção , Cádmio/isolamento & purificação , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/métodos , Difração de Raios X
10.
Int J Biol Macromol ; 97: 209-217, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28064053

RESUMO

The aim of the present work was to develop green carriers for methotrexate using κ-carrageenan/chitosan complexes. Magnetic Fe3O4 nanoparticles were first synthesized in the presence of κ-carrageenan through in situ method. Then, the obtained magnetic κ-carrageenan was crosslinked using the polycation chitosan biopolymer. The physical and structural properties of hydrogels were investigated by FTIR, XRD, SEM, TEM, TGA, and VSM techniques. The pH-dependent swelling behavior of hydrogels was examined in various buffer solutions. All of the prepared hydrogels showed a high swelling capacity in basic solutions. The introduction of magnetite nanoparticles into κ-carrageenan/chitosan complexes had a significant effect on the swelling capacity of magnetic hydrogels, as the water absorbency of hydrogels decreased with increasing magnetite content. Methotrexate as an anticancer and model drug was loaded on hydrogels and the release profiles were investigated at pH=7.4 and 5.3. The methotrexate encapsulation efficiency was increased by increasing magnetite and chitosan contents. The results demonstrated that the release of methotrexate from magnetic hydrogels is pH-dependent with a high release content at pH=7.4. The release profiles were analyzed by Peppas's empirical model and the release of drug from hydrogels followed Fickian type of diffusion mechanism at both pHs.


Assuntos
Antineoplásicos/química , Carragenina/química , Quitosana/química , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Metotrexato/química , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA