Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Res Rev ; 43(4): 775-828, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36710510

RESUMO

Modified and synthetic α-amino acids are known to show diverse applications. Histidine, which possesses numerous applications when subjected to synthetic modifications, is one such amino acid. The utility of modified histidines varies widely from remarkable biological activities to catalysis, and from nanotechnology to polymer chemistry. This renders histidine residue an important place in scientific research. Histidine is a well-studied scaffold and constitutes the active site of various enzymes catalyzing important reactions in the biological systems. A rational modification in histidine structure with a distinctly developed protocol extensively changes its physical and chemical properties. The utilization of modified histidines in search of potent, target selective and proteostable scaffolds is vital in the development of bioactive peptides with enhanced drug-likeliness. This review is a compilation and analysis of reported side-chain ring modifications at histidine followed by applications of ring-modified histidines in the synthesis of various categories of bioactive peptides and peptidomimetics.


Assuntos
Química Farmacêutica , Histidina , Humanos , Histidina/química , Peptídeos/farmacologia , Peptídeos/química , Descoberta de Drogas
2.
PLoS One ; 16(11): e0260283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793553

RESUMO

SARS-CoV-2 viral attachment and entry into host cells is mediated by a direct interaction between viral spike glycoproteins and membrane bound angiotensin-converting enzyme 2 (ACE2). The receptor binding motif (RBM), located within the S1 subunit of the spike protein, incorporates the majority of known ACE2 contact residues responsible for high affinity binding and associated virulence. Observation of existing crystal structures of the SARS-CoV-2 receptor binding domain (SRBD)-ACE2 interface, combined with peptide array screening, allowed us to define a series of linear native RBM-derived peptides that were selected as potential antiviral decoy sequences with the aim of directly binding ACE2 and attenuating viral cell entry. RBM1 (16mer): S443KVGGNYNYLYRLFRK458, RBM2A (25mer): E484GFNCYFPLQSYGFQPTNGVGYQPY508, RBM2B (20mer): F456NCYFPLQSYGFQPTNGVGY505 and RBM2A-Sc (25mer): NYGLQGSPFGYQETPYPFCNFVQYG. Data from fluorescence polarisation experiments suggested direct binding between RBM peptides and ACE2, with binding affinities ranging from the high nM to low µM range (Kd = 0.207-1.206 µM). However, the RBM peptides demonstrated only modest effects in preventing SRBD internalisation and showed no antiviral activity in a spike protein trimer neutralisation assay. The RBM peptides also failed to suppress S1-protein mediated inflammation in an endogenously expressing ACE2 human cell line. We conclude that linear native RBM-derived peptides are unable to outcompete viral spike protein for binding to ACE2 and therefore represent a suboptimal approach to inhibiting SARS-CoV-2 viral cell entry. These findings reinforce the notion that larger biologics (such as soluble ACE2, 'miniproteins', nanobodies and antibodies) are likely better suited as SARS-CoV-2 cell-entry inhibitors than short-sequence linear peptides.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Antivirais/farmacologia , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/imunologia , Internalização do Vírus , Células A549 , Humanos , Domínios e Motivos de Interação entre Proteínas
3.
ACS Med Chem Lett ; 5(4): 315-20, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900833

RESUMO

Rapid increase in the emergence of resistance against existing antifungal drugs created a need to discover new structural classes of antifungal agents. In this study we describe the synthesis of a new structural class of short antifungal peptidomimetcis, their activity, and plausible mechanism of action. The results of the study show that peptides 11e and 11f are more potent than the control drug amphotericin B, with no cytotoxicity to human cancer cells and noncancerous mammalian kidney cells. The selectivity of peptides to fungus is depicted by transmission electron microscopy studies, and it revealed that 11e possibly disrupts the model membrane of the fungal pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA