Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1011915, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38861581

RESUMO

Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.


Assuntos
Mycobacterium tuberculosis , Animais , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Camundongos , Locos de Características Quantitativas , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Modelos Animais de Doenças , Animais não Endogâmicos , Humanos , Mapeamento Cromossômico , Biologia de Sistemas
2.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915550

RESUMO

The spatial arrangement of cells is vital in developmental processes and organogenesis in multicellular life forms. Deep learning models trained with spatial omics data uncover complex patterns and relationships among cells, genes, and proteins in a high-dimensional space, providing new insights into biological processes and diseases. State-of-the-art in silico spatial multi-cell gene expression methods using histological images of tissue stained with hematoxylin and eosin (H&E) to characterize cellular heterogeneity. These computational techniques offer the advantage of analyzing vast amounts of spatial data in a scalable and automated manner, thereby accelerating scientific discovery and enabling more precise medical diagnostics and treatments. In this work, we developed a vision transformer (ViT) framework to map histological signatures to spatial single-cell transcriptomic signatures, named SPiRiT ( S patial Omics P rediction and R eproducibility integrated T ransformer). Our framework was enhanced by integrating cross validation with model interpretation during hyper-parameter tuning. SPiRiT predicts single-cell spatial gene expression using the matched histopathological image tiles of human breast cancer and whole mouse pup, evaluated by Xenium (10x Genomics) datasets. Furthermore, ViT model interpretation reveals the high-resolution, high attention area (HAR) that the ViT model uses to predict the gene expression, including marker genes for invasive cancer cells ( FASN ), stromal cells ( POSTN ), and lymphocytes ( IL7R ). In an apple-to-apple comparison with the ST-Net Convolutional Neural Network algorithm, SPiRiT improved predictive accuracy by 40% using human breast cancer Visium (10x Genomics) dataset. Cancer biomarker gene prediction and expression level are highly consistent with the tumor region annotation. In summary, our work highlights the feasibility to infer spatial single-cell gene expression using tissue morphology in multiple-species, i.e., human and mouse, and multi-organs, i.e., mouse whole body morphology. Importantly, incorporating model interpretation and vision transformer is expected to serve as a general-purpose framework for spatial transcriptomics.

3.
Arthritis Res Ther ; 22(1): 48, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171325

RESUMO

BACKGROUND: Skin fibrosis is the clinical hallmark of systemic sclerosis (SSc), where collagen deposition and remodeling of the dermis occur over time. The most widely used outcome measure in SSc clinical trials is the modified Rodnan skin score (mRSS), which is a semi-quantitative assessment of skin stiffness at seventeen body sites. However, the mRSS is confounded by obesity, edema, and high inter-rater variability. In order to develop a new histopathological outcome measure for SSc, we applied a computer vision technology called a deep neural network (DNN) to stained sections of SSc skin. We tested the hypotheses that DNN analysis could reliably assess mRSS and discriminate SSc from normal skin. METHODS: We analyzed biopsies from two independent (primary and secondary) cohorts. One investigator performed mRSS assessments and forearm biopsies, and trichrome-stained biopsy sections were photomicrographed. We used the AlexNet DNN to generate a numerical signature of 4096 quantitative image features (QIFs) for 100 randomly selected dermal image patches/biopsy. In the primary cohort, we used principal components analysis (PCA) to summarize the QIFs into a Biopsy Score for comparison with mRSS. In the secondary cohort, using QIF signatures as the input, we fit a logistic regression model to discriminate between SSc vs. control biopsy, and a linear regression model to estimate mRSS, yielding Diagnostic Scores and Fibrosis Scores, respectively. We determined the correlation between Fibrosis Scores and the published Scleroderma Skin Severity Score (4S) and between Fibrosis Scores and longitudinal changes in mRSS on a per patient basis. RESULTS: In the primary cohort (n = 6, 26 SSc biopsies), Biopsy Scores significantly correlated with mRSS (R = 0.55, p = 0.01). In the secondary cohort (n = 60 SSc and 16 controls, 164 biopsies; divided into 70% training and 30% test sets), the Diagnostic Score was significantly associated with SSc-status (misclassification rate = 1.9% [training], 6.6% [test]), and the Fibrosis Score significantly correlated with mRSS (R = 0.70 [training], 0.55 [test]). The DNN-derived Fibrosis Score significantly correlated with 4S (R = 0.69, p = 3 × 10- 17). CONCLUSIONS: DNN analysis of SSc biopsies is an unbiased, quantitative, and reproducible outcome that is associated with validated SSc outcomes.


Assuntos
Algoritmos , Redes Neurais de Computação , Escleroderma Sistêmico/patologia , Pele/patologia , Adulto , Compostos Azo/química , Biópsia , Estudos de Coortes , Aprendizado Profundo , Amarelo de Eosina-(YS)/química , Feminino , Humanos , Masculino , Verde de Metila/química , Pessoa de Meia-Idade , Análise de Componente Principal , Esclerodermia Localizada/patologia , Índice de Gravidade de Doença , Pele/química
4.
Genome Med ; 9(1): 27, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28330499

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. METHODS: We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. RESULTS: We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. CONCLUSIONS: Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases.


Assuntos
Redes Reguladoras de Genes , Escleroderma Sistêmico/genética , Transcriptoma , Biópsia , Esôfago/metabolismo , Fibrose , Humanos , Leucócitos Mononucleares/metabolismo , Pulmão/metabolismo , Especificidade de Órgãos , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Pele/metabolismo
5.
RNA ; 21(11): 1943-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26377992

RESUMO

The animal replication-dependent (RD) histone mRNAs are coordinately regulated with chromosome replication. The RD-histone mRNAs are the only known cellular mRNAs that are not polyadenylated. Instead, the mature transcripts end in a conserved stem-loop (SL) structure. This SL structure interacts with the stem-loop binding protein (SLBP), which is involved in all aspects of RD-histone mRNA metabolism. We used several genomic methods, including high-throughput sequencing of cross-linked immunoprecipitate (HITS-CLIP) to analyze the RNA-binding landscape of SLBP. SLBP was not bound to any RNAs other than histone mRNAs. We performed bioinformatic analyses of the HITS-CLIP data that included (i) clustering genes by sequencing read coverage using CVCA, (ii) mapping the bound RNA fragment termini, and (iii) mapping cross-linking induced mutation sites (CIMS) using CLIP-PyL software. These analyses allowed us to identify specific sites of molecular contact between SLBP and its RD-histone mRNA ligands. We performed in vitro crosslinking assays to refine the CIMS mapping and found that uracils one and three in the loop of the histone mRNA SL preferentially crosslink to SLBP, whereas uracil two in the loop preferentially crosslinks to a separate component, likely the 3'hExo. We also performed a secondary analysis of an iCLIP data set to map UPF1 occupancy across the RD-histone mRNAs and found that UPF1 is bound adjacent to the SLBP-binding site. Multiple proteins likely bind the 3' end of RD-histone mRNAs together with SLBP.


Assuntos
Histonas/genética , RNA Mensageiro/genética , Animais , Sítios de Ligação/genética , Linhagem Celular , Linhagem Celular Tumoral , Replicação do DNA/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Ligação Proteica/genética , Proteínas de Ligação a RNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
6.
Mol Biol Cell ; 24(23): 3634-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24109597

RESUMO

We identify the cell cycle-regulated mRNA transcripts genome-wide in the osteosarcoma-derived U2OS cell line. This results in 2140 transcripts mapping to 1871 unique cell cycle-regulated genes that show periodic oscillations across multiple synchronous cell cycles. We identify genomic loci bound by the G2/M transcription factor FOXM1 by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and associate these with cell cycle-regulated genes. FOXM1 is bound to cell cycle-regulated genes with peak expression in both S phase and G2/M phases. We show that ChIP-seq genomic loci are responsive to FOXM1 using a real-time luciferase assay in live cells, showing that FOXM1 strongly activates promoters of G2/M phase genes and weakly activates those induced in S phase. Analysis of ChIP-seq data from a panel of cell cycle transcription factors (E2F1, E2F4, E2F6, and GABPA) from the Encyclopedia of DNA Elements and ChIP-seq data for the DREAM complex finds that a set of core cell cycle genes regulated in both U2OS and HeLa cells are bound by multiple cell cycle transcription factors. These data identify the cell cycle-regulated genes in a second cancer-derived cell line and provide a comprehensive picture of the transcriptional regulatory systems controlling periodic gene expression in the human cell division cycle.


Assuntos
Fatores de Transcrição E2F/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes cdc , Ciclo Celular/genética , Imunoprecipitação da Cromatina , Proteína Forkhead Box M1 , Perfilação da Expressão Gênica , Células HeLa , Humanos , Família Multigênica , Ligação Proteica/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcrição Gênica
7.
Mol Biol Cell ; 23(16): 3079-93, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22740631

RESUMO

We developed a system to monitor periodic luciferase activity from cell cycle-regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle-regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle-dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Expressão Gênica , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Análise por Conglomerados , Sequência Consenso , Fator de Transcrição E2F1/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Luciferases/biossíntese , Luciferases/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação a Fosfato , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , Análise de Célula Única , Transcriptoma
8.
J Invest Dermatol ; 132(5): 1363-73, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22318389

RESUMO

Skin biopsy gene expression was analyzed by DNA microarray from 13 diffuse cutaneous systemic sclerosis (dSSc) patients enrolled in an open-label study of rituximab, 9 dSSc patients not treated with rituximab, and 9 healthy controls. These data recapitulate the patient "intrinsic" gene expression subsets described previously, including fibroproliferative, inflammatory, and normal-like groups. Serial skin biopsies showed consistent and non-progressing gene expression over time, and importantly, the patients in the inflammatory subset do not move to the fibroproliferative subset, and vice versa. We were unable to detect significant differences in gene expression before and after rituximab treatment, consistent with an apparent lack of clinical response. Serial biopsies from each patient stayed within the same gene expression subset, regardless of treatment regimen or the time point at which they were taken. Collectively, these data emphasize the heterogeneous nature of SSc and demonstrate that the intrinsic subsets are an inherent, reproducible, and stable feature of the disease that is independent of disease duration. Moreover, these data have fundamental importance for the future development of personalized therapy for SSc; drugs targeting inflammation are likely to benefit those patients with an inflammatory signature, whereas drugs targeting fibrosis are likely to benefit those with a fibroproliferative signature.


Assuntos
Expressão Gênica , Esclerodermia Difusa/genética , Esclerodermia Difusa/patologia , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Monoclonais Murinos/uso terapêutico , Biópsia , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Análise em Microsséries , RNA Mensageiro/metabolismo , Rituximab , Esclerodermia Difusa/tratamento farmacológico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA