Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging Cancer ; 2(1-2): 45-69, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34212156

RESUMO

Cardiovascular diseases (CVD) are the leading cause of death worldwide, and age is by far the greatest risk factor for developing CVD. Vascular dysfunction, including endothelial dysfunction and arterial stiffening, is responsible for much of the increase in CVD risk with aging. A key mechanism involved in vascular dysfunction with aging is oxidative stress, which reduces the bioavailability of nitric oxide (NO) and induces adverse changes to the extracellular matrix of the arterial wall (e.g., elastin fragmentation/degradation, collagen deposition) and an increase in advanced glycation end products, which form crosslinks in arterial wall structural proteins. Although vascular dysfunction and CVD are most prevalent in older adults, several conditions can "accelerate" these events at any age. One such factor is chemotherapy with anthracyclines, such as doxorubicin (DOXO), to combat common forms of cancer. Children, adolescents and young adults treated with these chemotherapeutic agents demonstrate impaired vascular function and an increased risk of future CVD development compared with healthy age-matched controls. Anthracycline treatment also worsens vascular dysfunction in mid-life (50-64 years of age) and older (65 and older) adults such that endothelial dysfunction and arterial stiffness are greater compared to age-matched controls. Collectively, these observations indicate that use of anthracycline chemotherapeutic agents induce a vascular aging-like phenotype and that the latter contributes to premature CVD in cancer survivors exposed to these agents. Here, we review the existing literature supporting these ideas, discuss potential mechanisms as well as interventions that may protect arteries from these adverse effects, identify research gaps and make recommendations for future research.

3.
Amino Acids ; 53(12): 1927-1939, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34089390

RESUMO

Proline dehydrogenase (PRODH) is a mitochondrial inner membrane flavoprotein critical for cancer cell survival under stress conditions and newly recognized as a potential target for cancer drug development. Reversible (competitive) and irreversible (suicide) inhibitors of PRODH have been shown in vivo to inhibit cancer cell growth with excellent host tolerance. Surprisingly, the PRODH suicide inhibitor N-propargylglycine (N-PPG) also induces rapid decay of PRODH with concordant upregulation of mitochondrial chaperones (HSP-60, GRP-75) and the inner membrane protease YME1L1, signifying activation of the mitochondrial unfolded protein response (UPRmt) independent of anticancer activity. The present study was undertaken to address two aims: (i) use PRODH overexpressing human cancer cells (ZR-75-1) to confirm the UPRmt inducing properties of N-PPG relative to another equipotent irreversible PRODH inhibitor, thiazolidine-2-carboxylate (T2C); and (ii) employ biochemical and transcriptomic approaches to determine if orally administered N-PPG can penetrate the blood-brain barrier, essential for its future use as a brain cancer therapeutic, and also potentially protect normal brain tissue by inducing mitohormesis. Oral daily treatments of N-PPG produced a dose-dependent decline in brain mitochondrial PRODH protein without detectable impairment in mouse health; furthermore, mice repeatedly dosed with 50 mg/kg N-PPG showed increased brain expression of the mitohormesis associated protease, YME1L1. Whole brain transcriptome (RNAseq) analyses of these mice revealed significant gene set enrichment in N-PPG stimulated neural processes (FDR p < 0.05). Given this in vivo evidence of brain bioavailability and neural mitohormesis induction, N-PPG appears to be unique among anticancer agents and should be evaluated for repurposing as a pharmaceutical capable of mitigating the proteotoxic mechanisms driving neurodegenerative disorders.


Assuntos
Alcinos/farmacologia , Antineoplásicos/farmacologia , Encéfalo/efeitos dos fármacos , Glicina/análogos & derivados , Prolina Oxidase/antagonistas & inibidores , Prolina/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glicina/farmacologia , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Prolina/análogos & derivados , Prolina/farmacologia , Tiazolidinas/farmacologia , Transcriptoma/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
4.
Mol Cancer Ther ; 18(8): 1374-1385, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31189611

RESUMO

Proline dehydrogenase (PRODH) is a p53-inducible inner mitochondrial membrane flavoprotein linked to electron transport for anaplerotic glutamate and ATP production, most critical for cancer cell survival under microenvironmental stress conditions. Proposing that PRODH is a unique mitochondrial cancer target, we structurally model and compare its cancer cell activity and consequences upon exposure to either a reversible (S-5-oxo: S-5-oxo-2-tetrahydrofurancarboxylic acid) or irreversible (N-PPG: N-propargylglycine) PRODH inhibitor. Unlike 5-oxo, the suicide inhibitor N-PPG induces early and selective decay of PRODH protein without triggering mitochondrial destruction, consistent with N-PPG activation of the mitochondrial unfolded protein response. Fly and breast tumor (MCF7)-xenografted mouse studies indicate that N-PPG doses sufficient to phenocopy PRODH knockout and induce its decay can be safely and effectively administered in vivo Among breast cancer cell lines and tumor samples, PRODH mRNA expression is subtype dependent and inversely correlated with glutaminase (GLS1) expression; combining inhibitors of PRODH (S-5-oxo and N-PPG) and GLS1 (CB-839) produces additive if not synergistic loss of cancer cell (ZR-75-1, MCF7, DU4475, and BT474) growth and viability. Although PRODH knockdown alone can induce cancer cell apoptosis, the anticancer potential of either reversible or irreversible PRODH inhibitors is strongly enhanced when p53 is simultaneously upregulated by an MDM2 antagonist (MI-63 and nutlin-3). However, maximum anticancer synergy is observed in vitro when the PRODH suicide inhibitor, N-PPG, is combined with both GLS1-inhibiting and a p53-upregulating MDM2 antagonist. These findings provide preclinical rationale for the development of N-PPG-like PRODH inhibitors as cancer therapeutics to exploit synthetic lethal interactions with p53 upregulation and GLS1 inhibition.


Assuntos
Glutaminase/antagonistas & inibidores , Glutaminase/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Prolina Oxidase/antagonistas & inibidores , Prolina Oxidase/genética , Mutações Sintéticas Letais , Proteína Supressora de Tumor p53/genética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Ativação Enzimática , Glutaminase/química , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Prolina Oxidase/química , Ligação Proteica , Relação Estrutura-Atividade , Ativação Transcricional , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA