Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 357(5): e2300435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314850

RESUMO

Phenotypic drug discovery (PDD) is an effective drug discovery approach by observation of therapeutic effects on disease phenotypes, especially in complex disease systems. Triple-negative breast cancer (TNBC) is composed of several complex disease features, including high tumor heterogeneity, high invasive and metastatic potential, and a lack of effective therapeutic targets. Therefore, identifying effective and novel agents through PDD is a current trend in TNBC drug development. In this study, 23 novel small molecules were synthesized using 4-(phenylsulfonyl)morpholine as a pharmacophore. Among these derivatives, GL24 (4m) exhibited the lowest half-maximal inhibitory concentration value (0.90 µM) in MDA-MB-231 cells. To investigate the tumor-suppressive mechanisms of GL24, transcriptomic analyses were used to detect the perturbation for gene expression upon GL24 treatment. Followed by gene ontology (GO) analysis, gene set enrichment analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, multiple ER stress-dependent tumor suppressive signals were identified, such as unfolded protein response (UPR), p53 pathway, G2/M checkpoint, and E2F targets. Most of the identified pathways triggered by GL24 eventually led to cell-cycle arrest and then to apoptosis. In summary, we developed a novel 4-(phenylsulfonyl)morpholine derivative GL24 with a strong potential for inhibiting TNBC cell growth through ER stress-dependent tumor suppressive signals.


Assuntos
Antineoplásicos , Morfolinas , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Humanos , Morfolinas/farmacologia , Morfolinas/síntese química , Morfolinas/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Feminino , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Estrutura Molecular
2.
Genome Res ; 29(11): 1766-1776, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31515285

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing is a very common co-/posttranscriptional modification that can lead to A-to-G changes at the RNA level and compensate for G-to-A genomic changes to a certain extent. It has been shown that each healthy individual can carry dozens of missense variants predicted to be severely deleterious. Why strongly detrimental variants are preserved in a population and not eliminated by negative natural selection remains mostly unclear. Here, we ask if RNA editing correlates with the burden of deleterious A/G polymorphisms in a population. Integrating genome and transcriptome sequencing data from 447 human lymphoblastoid cell lines, we show that nonsynonymous editing activities (prevalence/level) are negatively correlated with the deleteriousness of A-to-G genomic changes and positively correlated with that of G-to-A genomic changes within the population. We find a significantly negative correlation between nonsynonymous editing activities and allele frequency of A within the population. This negative editing-allele frequency correlation is particularly strong when editing sites are located in highly important genes/loci. Examinations of deleterious missense variants from the 1000 Genomes Project further show a significantly higher proportion of rare missense mutations for G-to-A changes than for other types of changes. The proportion for G-to-A changes increases with increasing deleterious effects of the changes. Moreover, the deleteriousness of G-to-A changes is significantly positively correlated with the percentage of editing enzyme binding motifs at the variants. Overall, we show that nonsynonymous editing is associated with the increased burden of G-to-A missense mutations in healthy individuals, expanding RNA editing in pathogenomics studies.


Assuntos
Adenosina/genética , Inosina/genética , Mutação de Sentido Incorreto , Edição de RNA , RNA/genética , Frequência do Gene , Humanos
3.
Genome Biol Evol ; 10(2): 521-537, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294013

RESUMO

Adenosine-to-inosine (A-to-I) editing is widespread across the kingdom Metazoa. However, for the lack of comprehensive analysis in nonmodel animals, the evolutionary history of A-to-I editing remains largely unexplored. Here, we detect high-confidence editing sites using clustering and conservation strategies based on RNA sequencing data alone, without using single-nucleotide polymorphism information or genome sequencing data from the same sample. We thereby unveil the first evolutionary landscape of A-to-I editing maps across 20 metazoan species (from worm to human), providing unprecedented evidence on how the editing mechanism gradually expands its territory and increases its influence along the history of evolution. Our result revealed that highly clustered and conserved editing sites tended to have a higher editing level and a higher magnitude of the ADAR motif. The ratio of the frequencies of nonsynonymous editing to that of synonymous editing remarkably increased with increasing the conservation level of A-to-I editing. These results thus suggest potentially functional benefit of highly clustered and conserved editing sites. In addition, spatiotemporal dynamics analyses reveal a conserved enrichment of editing and ADAR expression in the central nervous system throughout more than 300 Myr of divergent evolution in complex animals and the comparability of editing patterns between invertebrates and between vertebrates during development. This study provides evolutionary and dynamic aspects of A-to-I editome across metazoan species, expanding this important but understudied class of nongenomically encoded events for comprehensive characterization.


Assuntos
Adenosina/genética , Inosina/genética , Edição de RNA , RNA/genética , Animais , Análise por Conglomerados , Evolução Molecular , Humanos , Análise de Sequência de RNA
4.
Artigo em Inglês | MEDLINE | ID: mdl-28197088

RESUMO

In this study, we used the Hodgkin-Huxley (HH) model of neurons to investigate the phase diagram of a developing single-layer neural network and that of a network consisting of two weakly coupled neural layers. These networks are noise driven and learn through the spike-timing-dependent plasticity (STDP) or the inverse STDP rules. We described how these networks transited from a non-synchronous background activity state (BAS) to a synchronous firing state (SFS) by varying the network connectivity and the learning efficacy. In particular, we studied the interaction between a SFS layer and a BAS layer, and investigated how synchronous firing dynamics was induced in the BAS layer. We further investigated the effect of the inter-layer interaction on a BAS to SFS repair mechanism by considering three types of neuron positioning (random, grid, and lognormal distributions) and two types of inter-layer connections (random and preferential connections). Among these scenarios, we concluded that the repair mechanism has the largest effect for a network with the lognormal neuron positioning and the preferential inter-layer connections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA