Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 82(5): 688-697, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36720581

RESUMO

OBJECTIVES: Retroperitoneal fibrosis (RPF) is a rare autoimmune disease with fibrous tissue growth and inflammation in retroperitoneum. Its current treatments involve long-term uptake of glucocorticoids (e.g., prednisone) for controlling inflammation; however, side effects are common. We strived for an improved therapy for fibrosis remission while reducing side effects. METHODS: We surveyed gene-disease-drug databases and discovered that mammalian target of rapamycin (mTOR) was a key signalling protein in RPF and the mTOR inhibitor compound sirolimus affected many RPF pathways. We designed a therapy combining a gradual reduction of prednisone with a long-term, stable dosage of sirolimus. We then implemented a single-arm clinical trial and assessed the effects in eight RPF patients at 0, 12 and 48 weeks of treatment by measuring fibrous tissue mass by CT, markers of inflammation and kidney functions by lab tests, immune cell profiles by flow cytometry and plasma inflammatory proteins by Olink proteomics. RESULTS: With the combined therapy, fibrous tissue shrunk about by half, markers of acute inflammation reduced by 70% and most patients with abnormal kidney functions had them restored to normal range. Molecularly, fibrosis-related T cell subsets, including TH2, TH17 and circulating TFH cells, were reduced and tumour necrosis factor and related cytokines restored to healthy levels. No severe long-term side effects were observed. CONCLUSIONS: Our combined therapy resulted in significant fibrosis remission and an overall regression of the immune system towards healthy states, while achieving good tolerance. We concluded that this new therapy had the potential to replace the steroid monotherapy for treating RPF.


Assuntos
Fibrose Retroperitoneal , Humanos , Fibrose Retroperitoneal/tratamento farmacológico , Prednisona/uso terapêutico , Sirolimo/uso terapêutico , Fibrose , Inflamação , Serina-Treonina Quinases TOR
2.
Biomark Res ; 10(1): 13, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331335

RESUMO

BACKGROUND: Adoptive cell therapy (ACT) is a particularly promising area of cancer immunotherapy, engineered T and NK cells that express chimeric antigen receptors (CAR) are being explored for treating hematopoietic malignancies but exhibit limited clinical benefits for solid tumour patients, successful cellular immunotherapy of solid tumors demands new strategies. METHODS: Inactivation of BCL11B were performed by CRISPR/Cas9 in human T cells. Immunophenotypic and transcriptional profiles of sgBCL11B T cells were characterized by cytometer and transcriptomics, respectively. sgBCL11B T cells are further engineered with chimeric antigen receptor. Anti-tumor activity of ITNK or CAR-ITNK cells were evaluated in preclinical and clinical studies. RESULTS: We report that inactivation of BCL11B in human CD8+ and CD4+ T cells induced their reprogramming into induced T-to-natural killer cells (ITNKs). ITNKs contained a diverse TCR repertoire; downregulated T cell-associated genes such as TCF7 and LEF1; and expressed high levels of NK cell lineage-associated genes. ITNKs and chimeric antigen receptor (CAR)-transduced ITNKs selectively lysed a variety of cancer cells in culture and suppressed the growth of solid tumors in xenograft models. In a preliminary clinical study, autologous administration of ITNKs in patients with advanced solid tumors was well tolerated, and tumor stabilization was seen in six out nine patients, with one partial remission. CONCLUSIONS: The novel ITNKs thus may be a promising novel cell source for cancer immunotherapy. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03882840 . Registered 20 March 2019-Retrospectively registered.

3.
ACS Biomater Sci Eng ; 6(11): 6263-6275, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33449655

RESUMO

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs), which have promising potential applications in regenerative medicine. However, the challenges of successful applications of human iPSCs for medical purposes are the low generation efficiency, heterogeneous colonies, and exposure to the animal-derived product Matrigel. We aimed to investigate whether human urinal cells could be efficiently reprogrammed into iPSCs in three-dimensional Puramatrix (3D-PM) compared to two-dimensional Matrigel (2D-MG) and to understand how this 3D hydrogel environment affects the reprogramming process. Human urinal cells were successfully reprogrammed into iPSCs in the defined synthetic animal-free 3D-PM. Interestingly, although the colony efficiency in 3D-PM was similar to that in 2D-MG (∼0.05%), the reprogrammed colonies in 3D-PM contained an iPSC population with significantly higher homogeneity, as evidenced by the pluripotent-like morphology and expression of markers. This was further confirmed by transcriptome profile analysis in bulk cells and at the single cell level. Moreover, the homogeneity of the iPSC population in 3D-PM colonies was correlated with the downregulation of integrin ß1 (ITGB1) and phosphorylated focal adhesion kinase (FAK). Collectively, 3D-PM provides an alternative approach for obtaining iPSCs with enhanced homogeneity. This work also unveiled the regulation of human somatic cell reprogramming via the extracellular microenvironment.


Assuntos
Aparelho Sanitário , Células-Tronco Pluripotentes Induzidas , Animais , Reprogramação Celular , Humanos , Hidrogéis/farmacologia , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA