Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(17): 8971-8980, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629792

RESUMO

Cells require oligonucleotides and polypeptides with specific, homochiral sequences to perform essential functions, but it is unclear how such oligomers were selected from random sequences at the origin of life. Cells were probably preceded by simple compartments such as fatty acid vesicles, and oligomers that increased the stability, growth, or division of vesicles could have thereby increased in frequency. We therefore tested whether prebiotic peptides alter the stability or growth of vesicles composed of a prebiotic fatty acid. We find that three of 15 dipeptides tested reduce salt-induced flocculation of vesicles. All three contain leucine, and increasing their length increases the efficacy. Also, leucine-leucine but not alanine-alanine increases the size of vesicles grown by multiple additions of micelles. In a molecular simulation, leucine-leucine docks to the membrane, with the side chains inserted into the hydrophobic core of the bilayer, while alanine-alanine fails to dock. Finally, the heterochiral forms of leucine-leucine, at a high concentration, rapidly shrink the vesicles and make them leakier and less stable to high pH than the homochiral forms do. Thus, prebiotic peptide-membrane interactions influence the flocculation, growth, size, leakiness, and pH stability of prebiotic vesicles, with differential effects due to sequence, length, and chirality. These differences could lead to a population of vesicles enriched for peptides with beneficial sequence and chirality, beginning selection for the functional oligomers that underpin life.


Assuntos
Peptídeos , Peptídeos/química , Alanina/química , Estereoisomerismo , Células Artificiais/química , Leucina/química , Origem da Vida , Dipeptídeos/química
2.
Biophys J ; 119(5): 924-938, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814060

RESUMO

Protein/lipid coassembly is an understudied phenomenon that is important to the function of antimicrobial peptides as well as the pathological effects of amyloid. Here, we study the coassembly process of PAP248-286, a seminal peptide that displays both amyloid-forming and antimicrobial activity. PAP248-286 is a peptide fragment of prostatic acid phosphatase and has been reported to form amyloid fibrils, known as semen-derived enhancer of viral infection (SEVI), that enhance the viral infectivity of human immunodeficiency virus. We find that in addition to forming amyloid, PAP248-286 much more readily assembles with lipid vesicles into peptide/lipid coaggregates that resemble amyloid fibrils in some important ways but are a distinct species. The formation of these PAP248-286/lipid coaggregates, which we term "messicles," is controlled by the peptide:lipid (P:L) ratio and by the lipid composition. The optimal P:L ratio is around 1:10, and at least 70% anionic lipid is required for coaggregate formation. Once formed, messicles are not disrupted by subsequent changes in P:L ratio. We propose that messicles form through a polyvalent assembly mechanism, in which a critical surface density of PAP248-286 on liposomes enables peptide-mediated particle bridging into larger species. Even at ∼50-fold lower PAP248-286 concentrations, messicles form at least 10-fold faster than amyloid fibrils. It is therefore possible that some or all of the biological activities assigned to SEVI, the amyloid form of PAP248-286, could instead be attributed to a PAP248-286/lipid coaggregate. More broadly speaking, this work could provide a potential framework for the discovery and characterization of nonamyloid peptide/lipid coaggregates by other amyloid-forming proteins and antimicrobial peptides.


Assuntos
HIV-1 , Fosfatase Ácida , Amiloide , Humanos , Lipídeos , Peptídeos , Sêmen
3.
Phys Rev Lett ; 101(1): 019601; discussion 019602, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18764161
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA