Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(5): e1012059, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753883

RESUMO

The eukaryotic mRNA life cycle includes transcription, nuclear mRNA export and degradation. To quantify all these processes simultaneously, we perform thiol-linked alkylation after metabolic labeling of RNA with 4-thiouridine (4sU), followed by sequencing of RNA (SLAM-seq) in the nuclear and cytosolic compartments of human cancer cells. We develop a model that reliably quantifies mRNA-specific synthesis, nuclear export, and nuclear and cytosolic degradation rates on a genome-wide scale. We find that nuclear degradation of polyadenylated mRNA is negligible and nuclear mRNA export is slow, while cytosolic mRNA degradation is comparatively fast. Consequently, an mRNA molecule generally spends most of its life in the nucleus. We also observe large differences in the nuclear export rates of different 3'UTR transcript isoforms. Furthermore, we identify genes whose expression is abruptly induced upon metabolic labeling. These transcripts are exported substantially faster than average mRNAs, suggesting the existence of alternative export pathways. Our results highlight nuclear mRNA export as a limiting factor in mRNA metabolism and gene regulation.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular , RNA Mensageiro , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Humanos , Núcleo Celular/metabolismo , Estabilidade de RNA/genética , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Citosol/metabolismo
2.
Cancers (Basel) ; 13(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771537

RESUMO

Human hepatocellular carcinoma (HCC) is among the most lethal and common cancers in the human population, and new molecular targets for therapeutic intervention are urgently needed. Deleted in liver cancer 1 (DLC1) was originally identified as a tumor suppressor gene in human HCC. DLC1 is a Rho-GTPase-activating protein (RhoGAP) which accelerates the return of RhoGTPases to an inactive state. We recently described that the restoration of DLC1 expression induces cellular senescence. However, this principle is not amenable to direct therapeutic targeting. We therefore performed gene expression profiling for HepG2 cells depleted of DLC1 to identify druggable gene targets mediating the effects of DLC1 on senescence induction. This approach revealed that versican (VCAN), tetraspanin 5 (TSPAN5) and N-cadherin (CDH2) were strongly upregulated upon DLC1 depletion in HCC cells, but only TSPAN5 affected the proliferation of HCC cells and human HCC. The depletion of TSPAN5 induced oncogene-induced senescence (OIS), mediated by the p16INK4a/pRb pathways. Mechanistically, silencing TSPAN5 reduced actin polymerization and thereby myocardin-related transcription factor A- filamin A (MRTF-A-FLNA) complex formation, resulting in decreased expression of MRTF/SRF-dependent target genes and senescence induction in vitro and in vivo. Our results identify TSPAN5 as a novel druggable target for HCC.

3.
Genome Res ; 30(9): 1332-1344, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32887688

RESUMO

Eukaryotic genes often generate a variety of RNA isoforms that can lead to functionally distinct protein variants. The synthesis and stability of RNA isoforms is poorly characterized because current methods to quantify RNA metabolism use short-read sequencing and cannot detect RNA isoforms. Here we present nanopore sequencing-based isoform dynamics (nano-ID), a method that detects newly synthesized RNA isoforms and monitors isoform metabolism. Nano-ID combines metabolic RNA labeling, long-read nanopore sequencing of native RNA molecules, and machine learning. Nano-ID derives RNA stability estimates and evaluates stability determining factors such as RNA sequence, poly(A)-tail length, secondary structure, translation efficiency, and RNA-binding proteins. Application of nano-ID to the heat shock response in human cells reveals that many RNA isoforms change their stability. Nano-ID also shows that the metabolism of individual RNA isoforms differs strongly from that estimated for the combined RNA signal at a specific gene locus. Nano-ID enables studies of RNA metabolism at the level of single RNA molecules and isoforms in different cell states and conditions.


Assuntos
Sequenciamento por Nanoporos/métodos , Isoformas de RNA/química , Estabilidade de RNA , Linhagem Celular Tumoral , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Isoformas de RNA/síntese química , Uridina/química
4.
PLoS Pathog ; 13(10): e1006664, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28968461

RESUMO

Epstein-Barr virus (EBV) infection converts resting human B cells into permanently proliferating lymphoblastoid cell lines (LCLs). The Epstein-Barr virus nuclear antigen 2 (EBNA2) plays a key role in this process. It preferentially binds to B cell enhancers and establishes a specific viral and cellular gene expression program in LCLs. The cellular DNA binding factor CBF1/CSL serves as a sequence specific chromatin anchor for EBNA2. The ubiquitous expression of this highly conserved protein raises the question whether additional cellular factors might determine EBNA2 chromatin binding selectively in B cells. Here we used CBF1 deficient B cells to identify cellular genes up or downregulated by EBNA2 as well as CBF1 independent EBNA2 chromatin binding sites. Apparently, CBF1 independent EBNA2 target genes and chromatin binding sites can be identified but are less frequent than CBF1 dependent EBNA2 functions. CBF1 independent EBNA2 binding sites are highly enriched for EBF1 binding motifs. We show that EBNA2 binds to EBF1 via its N-terminal domain. CBF1 proficient and deficient B cells require EBF1 to bind to CBF1 independent binding sites. Our results identify EBF1 as a co-factor of EBNA2 which conveys B cell specificity to EBNA2.


Assuntos
Linfócitos B/metabolismo , Cromatina/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Transativadores/metabolismo , Proteínas Virais/metabolismo , Linfócitos B/virologia , Linhagem Celular , Humanos , Regiões Promotoras Genéticas/imunologia , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/imunologia
5.
PLoS One ; 7(12): e52629, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300728

RESUMO

DNA methylation patterns change dynamically during mammalian development and lineage specification, yet scarce information is available about how DNA methylation affects gene expression profiles upon differentiation. Here we determine genome-wide transcription profiles during undirected differentiation of severely hypomethylated (Dnmt1⁻/⁻) embryonic stem cells (ESCs) as well as ESCs completely devoid of DNA methylation (Dnmt1⁻/⁻;Dnmt3a⁻/⁻;Dnmt3b⁻/⁻ or TKO) and assay their potential to transit in and out of the ESC state. We find that the expression of only few genes mainly associated with germ line function and the X chromosome is affected in undifferentiated TKO ESCs. Upon initial differentiation as embryoid bodies (EBs) wild type, Dnmt1⁻/⁻ and TKO cells downregulate pluripotency associated genes and upregulate lineage specific genes, but their transcription profiles progressively diverge upon prolonged EB culture. While Oct4 protein levels are completely and homogeneously suppressed, transcription of Oct4 and Nanog is not completely silenced even at late stages in both Dnmt1⁻/⁻ and TKO EBs. Despite late wild type and Dnmt1⁻/⁻ EBs showing a much higher degree of concordant expression, after EB dissociation and replating under pluripotency promoting conditions both Dnmt1⁻/⁻ and TKO cells, but not wild type cells rapidly revert to expression profiles typical of undifferentiated ESCs. Thus, while DNA methylation seems not to be critical for initial activation of differentiation programs, it is crucial for permanent restriction of developmental fate during differentiation.


Assuntos
Diferenciação Celular , Metilação de DNA , Corpos Embrioides/metabolismo , Epigênese Genética , Animais , Células Cultivadas , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , Corpos Embrioides/citologia , Corpos Embrioides/fisiologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Técnicas de Inativação de Genes , Genoma , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fator Inibidor de Leucemia/fisiologia , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Transcriptoma
6.
J Biol Chem ; 282(27): 19355-64, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17449914

RESUMO

Dynamitin is a commonly used inhibitor of cytoplasmic dynein-based motility in living cells. Dynamitin does not inhibit dynein directly but instead acts by causing disassembly of dynactin, a multiprotein complex required for dynein-based movement. In dynactin, dynamitin is closely associated with the subunits p150(Glued) and p24, which together form the shoulder and projecting arm structures of the dynactin molecule. In this study, we explore the way in which exogenous dynamitin effects dynactin disruption. We find that pure, recombinant dynamitin is an elongated protein with a strong propensity for self-assembly. Titration experiments reveal that free dynamitin binds dynactin before it causes release of subunits. When dynamitin is added to dynactin at an equimolar ratio of exogenous dynamitin subunits to endogenous dynamitin subunits (1x= 4 mol of exogenous dynamitin per mole of dynactin), exogenous dynamitin exchanges with endogenous dynamitin, and partial release of p150(Glued) is observed. When added in vast excess (> or =25x; 100 mol of exogenous dynamitin per mole of dynactin), recombinant dynamitin causes complete release of both p150(Glued) subunits, two dynamitins and one p24, but not other dynactin subunits. Our data suggest that dynamitin mediates disruption of dynactin by binding to endogenous dynamitin subunits. This binding destabilizes the shoulder structure that links the p150(Glued) arm to the Arp1 filament and leads to subunit release.


Assuntos
Dineínas/química , Proteínas Associadas aos Microtúbulos/química , Animais , Bovinos , Complexo Dinactina , Dineínas/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
7.
Mol Biol Cell ; 14(12): 5089-97, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14565986

RESUMO

Cytoplasmic dynein and dynactin are megadalton-sized multisubunit molecules that function together as a cytoskeletal motor. In the present study, we explore the mechanism of dynein-dynactin binding in vitro and then extend our findings to an in vivo context. Solution binding assays were used to define binding domains in the dynein intermediate chain (IC) and dynactin p150Glued subunit. Transient overexpression of a series of fragments of the dynein IC was used to determine the importance of this subunit for dynein function in mammalian tissue culture cells. Our results suggest that a functional dynein-dynactin interaction is required for proper microtubule organization and for the transport and localization of centrosomal components and endomembrane compartments. The dynein IC fragments have different effects on endomembrane localization, suggesting that different endomembranes may bind dynein via distinct mechanisms.


Assuntos
Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Células COS , Compartimento Celular/fisiologia , Chlorocebus aethiops , Complexo Dinactina , Endocitose/fisiologia , Endossomos/metabolismo , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Proteínas Luminescentes , Microscopia de Fluorescência , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA