RESUMO
BACKGROUND: Sarcoidosis is a heterogeneous granulomatous disease with no accurate biomarkers of disease progression. Therefore, we profiled and integrated the DNA methylome, mRNAs, and microRNAs to identify molecular changes associated with sarcoidosis and disease progression that might illuminate underlying mechanisms of disease and potential biomarkers. METHODS: Bronchoalveolar lavage cells from 64 sarcoidosis subjects and 16 healthy controls were used. DNA methylation was profiled on Illumina HumanMethylationEPIC arrays, mRNA by RNA-sequencing, and miRNAs by small RNA-sequencing. Linear models were fit to test for effect of sarcoidosis diagnosis and progression phenotype, adjusting for age, sex, smoking, and principal components of the data. We built a supervised multi-omics model using a subset of features from each dataset. RESULTS: We identified 1,459 CpGs, 64 mRNAs, and five miRNAs associated with sarcoidosis versus controls and four mRNAs associated with disease progression. Our integrated model emphasized the prominence of the PI3K/AKT1 pathway, which is important in T cell and mTOR function. Novel immune related genes and miRNAs including LYST, RGS14, SLFN12L, and hsa-miR-199b-5p, distinguished sarcoidosis from controls. Our integrated model also demonstrated differential expression/methylation of IL20RB, ABCC11, SFSWAP, AGBL4, miR-146a-3p, and miR-378b between non-progressive and progressive sarcoidosis. CONCLUSIONS: Leveraging the DNA methylome, transcriptome, and miRNA-sequencing in sarcoidosis BAL cells, we detected widespread molecular changes associated with disease, many which are involved in immune response. These molecules may serve as diagnostic/prognostic biomarkers and/or drug targets, although future testing is required for confirmation.
Assuntos
Líquido da Lavagem Broncoalveolar , Multiômica , Sarcoidose Pulmonar , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Estudos de Casos e Controles , Progressão da Doença , Metilação de DNA , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Sarcoidose Pulmonar/genética , Sarcoidose Pulmonar/metabolismo , Sarcoidose Pulmonar/diagnóstico , Sarcoidose Pulmonar/patologiaRESUMO
Objective: Sarcoidosis is a granulomatous disease affecting the lungs in over 90% of patients. Qualitative assessment of chest CT by radiologists is standard clinical practice and reliable quantification of disease from CT would support ongoing efforts to identify sarcoidosis phenotypes. Standard imaging feature engineering techniques such as radiomics suffer from extreme sensitivity to image acquisition and processing, potentially impeding generalizability of research to clinical populations. In this work, we instead investigate approaches to engineering variogram-based features with the intent to identify a robust, generalizable pipeline for image quantification in the study of sarcoidosis. Approach: For a cohort of more than 300 individuals with sarcoidosis, we investigated 24 feature engineering pipelines differing by decisions for image registration to a template lung, empirical and model variogram estimation methods, and feature harmonization for CT scanner model, and subsequently 48 sets of phenotypes produced through unsupervised clustering. We then assessed sensitivity of engineered features, phenotypes produced through unsupervised clustering, and sarcoidosis disease signal strength to pipeline. Main results: We found that variogram features had low to mild association with scanner model and associations were reduced by image registration. For each feature type, features were also typically robust to all pipeline decisions except image registration. Strength of disease signal as measured by association with pulmonary function testing and some radiologist visual assessments was strong (optimistic AUC ≈ 0.9, p ⪠0.0001 in models for architectural distortion, conglomerate mass, fibrotic abnormality, and traction bronchiectasis) and fairly consistent across engineering approaches regardless of registration and harmonization for CT scanner. Significance: Variogram-based features appear to be a suitable approach to image quantification in support of generalizable research in pulmonary sarcoidosis.
RESUMO
Sarcoidosis is a multi-organ granulomatous inflammatory disease of unknown etiology. Over 50% of patients will require treatment at some point in their disease and 10%-30% will develop a chronic progressive disease with pulmonary fibrosis leading to significant morbidity and mortality. Recently published guidelines recommend immunosuppressive therapy for sarcoidosis patients at risk of increased disease-related morbidity and mortality, and in whom disease has negatively impacted quality of life. Prednisone the currently recommended first line therapy is associated with significant toxicity however none of the other guideline recommended steroid sparing therapy is approved by regulatory agencies for use in sarcoidosis, and data in support of their use is weak. For patients with severe refractory disease requiring prolonged therapy, treatment options are limited. The need for expanding treatment options in sarcoidosis has been emphasized. Well conducted large, randomized trials evaluating currently available therapeutic options as well as novel pathways for targeting disease are necessary to better guide treatment decisions. These trials will not be without significant challenges. Sarcoidosis is a rare disease with heterogenous presentation and variable progression and clinical outcome. There are no universally agreed upon biomarkers of disease activity and measurement of outcomes is confounded by the need to balance patient centric measures and objective measures of disease activity. Our paper provides an update on developmental drugs in sarcoidosis and outlines several novel pathways that may be targeted for future drug development. Currently available trials are highlighted and ongoing challenges to drug development and clinical trial design are briefly discussed.
RESUMO
The study provides insights into proteins that may be relevant in BeS and CBD. It provides a framework to investigate the global changes in lung compartment-specific inflammatory cells to better understand the potential interplay of proteins in CBD. https://bit.ly/3PLNTXC.
RESUMO
Introduction: Sarcoidosis is a heterogeneous, granulomatous disease that can prove difficult to diagnose, with no accurate biomarkers of disease progression. Therefore, we profiled and integrated the DNA methylome, mRNAs, and microRNAs to identify molecular changes associated with sarcoidosis and disease progression that might illuminate underlying mechanisms of disease and potential genomic biomarkers. Methods: Bronchoalveolar lavage cells from 64 sarcoidosis subjects and 16 healthy controls were used. DNA methylation was profiled on Illumina HumanMethylationEPIC arrays, mRNA by RNA-sequencing, and miRNAs by small RNA-sequencing. Linear models were fit to test for effect of diagnosis and phenotype, adjusting for age, sex, and smoking. We built a supervised multi-omics model using a subset of features from each dataset. Results: We identified 46,812 CpGs, 1,842 mRNAs, and 5 miRNAs associated with sarcoidosis versus controls and 1 mRNA, SEPP1 - a protein that supplies selenium to cells, associated with disease progression. Our integrated model emphasized the prominence of the PI3K/AKT1 pathway in sarcoidosis, which is important in T cell and mTOR function. Novel immune related genes and miRNAs including LYST, RGS14, SLFN12L, and hsa-miR-199b-5p, distinguished sarcoidosis from controls. Our integrated model also demonstrated differential expression/methylation of IL20RB, ABCC11, SFSWAP, AGBL4, miR-146a-3p, and miR-378b between non-progressive and progressive sarcoidosis. Conclusions: Leveraging the DNA methylome, transcriptome, and miRNA-sequencing in sarcoidosis BAL cells, we detected widespread molecular changes associated with disease, many which are involved in immune response. These molecules may serve as diagnostic/prognostic biomarkers and/or drug targets, although future testing will be required for confirmation.
RESUMO
BACKGROUND: Pulmonary sarcoidosis is characterized by the accumulation of immune cells that form granulomas affecting the lungs. Efzofitimod (ATYR1923), a novel immunomodulator, selectively binds neuropilin 2, which is upregulated on immune cells in response to lung inflammation. RESEARCH QUESTION: What is the tolerability, safety, and effect on outcomes of efzofitimod in pulmonary sarcoidosis? STUDY DESIGN AND METHODS: In this randomized, double-blind, placebo-controlled study evaluating multiple ascending doses of efzofitimod administered intravenously every 4 weeks for 24 weeks, randomized patients (2:1) underwent a steroid taper to 5 mg/d by week 8 or < 5 mg/d after week 16. The primary end point was the incidence of adverse events (AEs); secondary end points included steroid reduction, change in lung function, and patient-reported outcomes on health-related quality-of-life scales. RESULTS: Thirty-seven patients received at least one dose of study medication. Efzofitimod was well tolerated at all doses, with no new or unexpected AEs and no dose-dependent AE incidence. Average daily steroid doses through end of study were 6.8 mg, 6.5 mg, and 5.6 mg for the 1 mg/kg, 3 mg/kg, and 5 mg/kg groups compared with 7.2 mg for placebo, resulting in a baseline-adjusted relative steroid reduction of 5%, 9%, and 22%, respectively. Clinically meaningful improvements were achieved across several patient-reported outcomes, several of which reached statistical significance in the 5 mg/kg dose arm. A dose-dependent but nonsignificant trend toward improved lung function also was observed for 3 and 5 mg/kg. INTERPRETATION: Efzofitimod was safe and well tolerated and was associated with dose-dependent improvements of several clinically relevant end points compared with placebo. The results of this study support further evaluation of efzofitimod in pulmonary sarcoidosis. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT03824392; URL: www. CLINICALTRIALS: gov.
Assuntos
Sarcoidose Pulmonar , Humanos , Sarcoidose Pulmonar/tratamento farmacológico , PulmãoRESUMO
Background: A limited pool of SNPs are linked to the development and severity of sarcoidosis, a systemic granulomatous inflammatory disease. By integrating genome-wide association studies (GWAS) data and expression quantitative trait loci (eQTL) single nuclear polymorphisms (SNPs), we aimed to identify novel sarcoidosis SNPs potentially influencing the development of complicated sarcoidosis. Methods: A GWAS (Affymetrix 6.0) involving 209 African-American (AA) and 193 European-American (EA, 75 and 51 complicated cases respectively) and publicly-available GWAS controls (GAIN) was utilized. Annotation of multi-tissue eQTL SNPs present on the GWAS created a pool of ~46,000 eQTL SNPs examined for association with sarcoidosis risk and severity (Logistic Model, Plink). The most significant EA/AA eQTL SNPs were genotyped in a sarcoidosis validation cohort (n=1034) and cross-validated in two independent GWAS cohorts. Results: No single GWAS SNP achieved significance (p<1x10-8), however, analysis of the eQTL/GWAS SNP pool yielded 621 eQTL SNPs (p<10-4) associated with 730 genes that highlighted innate immunity, MHC Class II, and allograft rejection pathways with multiple SNPs validated in an independent sarcoidosis cohort (105 SNPs analyzed) (NOTCH4, IL27RA, BTNL2, ANXA11, HLA-DRB1). These studies confirm significant association of eQTL/GWAS SNPs in EAs and AAs with sarcoidosis risk and severity (complicated sarcoidosis) involving HLA region and innate immunity. Conclusion: Despite the challenge of deciphering the genetic basis for sarcoidosis risk/severity, these results suggest that integrated eQTL/GWAS approaches may identify novel variants/genes and support the contribution of dysregulated innate immune responses to sarcoidosis severity.
RESUMO
BACKGROUND: Sarcoidosis, a multi-systemic granulomatous disease, is a predominantly T-cell disease but evidence for a role for humoral immunity in disease pathogenesis is growing. Utilizing samples from the Genomic Research in Alpha-1 anti-trypsin Deficiency and Sarcoidosis (GRADS) study, we examined the prevalence of autoantibodies in sarcoidosis patients with pulmonary-only and extra-pulmonary organ involvement compared to normal controls. STUDY DESIGN AND METHODS: We analyzed serum samples from sarcoidosis patients who participated in the GRADS study utilizing an autoantigen microarray platform for both IgM and IgG antibodies. The cohort included sarcoidosis patients with pulmonary-only disease (POS, n = 106), sarcoidosis patients with extra-pulmonary disease (EPS, n = 120) and a normal control cohort (NC, n = 101). Organ involvement was assessed following a standardized format across all GRADS participating centers. RESULTS: Sarcoidosis patients overall had increased levels of IgM and IgG autoantibodies compared to normal controls. In addition, several autoantibodies were elevated in the POS and EPS cohorts compared to the NC cohort. Differences in autoantibody levels were also noted between the POS and the EPS cohorts. When comparing organ involvement with sarcoidosis, bone, spleen and ear, nose and throat involvement had higher IgM expression than other organs. CONCLUSION: Sarcoidosis patients have elevated IgM and IgG autoantibody levels compared to normal controls. In addition, individuals with pulmonary as well as additional organ involvement had higher IgM expression. Further research is needed focusing on specific organ-autoantibody pairs and role of autoantibodies in disease pathogenesis.
Assuntos
Pneumopatias , Sarcoidose , Humanos , Autoanticorpos , Imunoglobulina G , Autoantígenos , Imunoglobulina MRESUMO
Chronic beryllium disease (CBD) is a Th1 granulomatous lung disease preceded by sensitization to beryllium (BeS). We profiled the methylome, transcriptome, and selected proteins in the lung to identify molecular signatures and networks associated with BeS and CBD. BAL cell DNA and RNA were profiled using microarrays from CBD (n = 30), BeS (n = 30), and control subjects (n = 12). BAL fluid proteins were measured using Olink Immune Response Panel proteins from CBD (n = 22) and BeS (n = 22) subjects. Linear models identified features associated with CBD, adjusting for covariation and batch effects. Multiomic integration methods identified correlated features between datasets. We identified 1,546 differentially expressed genes in CBD versus control subjects and 204 in CBD versus BeS. Of the 101 shared transcripts, 24 have significant cis relationships between gene expression and DNA methylation, assessed using expression quantitative trait methylation analysis, including genes not previously identified in CBD. A multiomic model of top DNA methylation and gene expression features demonstrated that the first component separated CBD from other samples and the second component separated control subjects from remaining samples. The top features on component one were enriched for T-lymphocyte function, and the top features on component two were enriched for innate immune signaling. We identified six differentially abundant proteins in CBD versus BeS, with two (SIT1 and SH2D1A) selected as important RNA features in the multiomic model. Our integrated analysis of DNA methylation, gene expression, and proteins in the lung identified multiomic signatures of CBD that differentiated it from BeS and control subjects.
Assuntos
Beriliose , Humanos , Beriliose/genética , Linfócitos T , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar , Imunidade Inata/genética , RNA , Doença CrônicaRESUMO
INTRODUCTION: Sarcoidosis is a granulomatous disorder thought to be caused by exposures in genetically susceptible individuals. This study investigated whether specific exposures were associated with different sarcoidosis phenotypes. METHODS: Extensive demographic, occupational and environmental exposure data was analyzed from subjects enrolled in the NHLBI Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. RESULTS: In patients with sarcoidosis, radiation exposure was significantly associated with an increased risk of cardiac sarcoidosis versus non-cardiac sarcoidosis. No exposures were significantly associated with pulmonary only disease versus extrapulmonary disease with or without pulmonary involvement, Scadding Stage II/III/IV versus Scadding Stage 0/I, acute or remitting disease versus non-acute or non-remitting disease, nor chronic versus non-chronic disease. Although not reaching statistically significance after adjustment for multiple comparisons, there were a number of exposures associated with specific disease phenotypes, including exposures where relationships to sarcoidosis have previously been described such as rural exposures and pesticide exposures. CONCLUSIONS: Radiation exposure may be a risk factor for cardiac sarcoidosis. Other exposures may also be associated with specific phenotypes and should be further explored. The study was limited by small groups of exposed subjects for individual exposures and multiple comparisons. The development of novel and innovative exposure assessment tools is needed.
Assuntos
Pneumopatias , Exposição Ocupacional , Sarcoidose , Deficiência de alfa 1-Antitripsina , Exposição Ambiental/efeitos adversos , Genômica , Humanos , Pneumopatias/complicações , Exposição Ocupacional/efeitos adversos , Sarcoidose/etiologia , Sarcoidose/genética , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/epidemiologia , Deficiência de alfa 1-Antitripsina/genéticaRESUMO
PURPOSE: Exposures related to beryllium (Be) are an enduring concern among workers in the nuclear weapons and other high-tech industries, calling for regular and rigorous biological monitoring. Conventional biomonitoring of Be in urine is not informative of cumulative exposure nor health outcomes. Biomarkers of exposure to Be based on non-invasive biomonitoring could help refine disease risk assessment. In a cohort of workers with Be exposure, we employed blood plasma extracellular vesicles (EVs) to discover novel biomarkers of exposure to Be. METHODS: EVs were isolated from plasma using size-exclusion chromatography and subjected to mass spectrometry-based proteomics. A protein-based classifier was developed using LASSO regression and validated by ELISA. RESULTS: We discovered a dual biomarker signature comprising zymogen granule protein 16B and putative protein FAM10A4 that differentiated between Be-exposed and -unexposed subjects. ELISA-based quantification of the biomarkers in an independent cohort of samples confirmed higher expression of the signature in the Be-exposed group, displaying high predictive accuracy (AUROC = 0.919). Furthermore, the biomarkers efficiently discriminated high- and low-exposure groups (AUROC = 0.749). CONCLUSIONS: This is the first report of EV biomarkers associated with Be exposure and exposure levels. The biomarkers could be implemented in resource-limited settings for Be exposure assessment.
Assuntos
Berílio , Vesículas Extracelulares , Berílio/metabolismo , Biomarcadores , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Espectrometria de Massas , Proteômica/métodosRESUMO
Multiple overlapping pathways are identified in tissue, BAL cells, PBMCs and a sarcoidosis in vitro granuloma model. Inferences from omic studies are constrained by small sample sizes. Studies comparing differences between sarcoidosis phenotypes are needed. https://bit.ly/30NaHz4.
RESUMO
OBJECTIVES: Human leukocyte antigen-DP beta 1 (HLA-DPB1) with a glutamic acid at the 69th position of the ß chain (E69) genotype and inhalational beryllium exposure individually contribute to risk of chronic beryllium disease (CBD) and beryllium sensitisation (BeS) in exposed individuals. This retrospective nested case-control study assessed the contribution of genetics and exposure in the development of BeS and CBD. METHODS: Workers with BeS (n=444), CBD (n=449) and beryllium-exposed controls (n=890) were enrolled from studies conducted at nuclear weapons and primary beryllium manufacturing facilities. Lifetime-average beryllium exposure estimates were based on workers' job questionnaires and historical and industrial hygienist exposure estimates, blinded to genotype and case status. Genotyping was performed using sequence-specific primer-PCR. Logistic regression models were developed allowing for over-dispersion, adjusting for workforce, race, sex and ethnicity. RESULTS: Having no E69 alleles was associated with lower odds of both CBD and BeS; every additional E69 allele increased odds for CBD and BeS. Increasing exposure was associated with lower odds of BeS. CBD was not associated with exposure as compared to controls, yet the per cent of individuals with CBD versus BeS increased with increasing exposure. No evidence of a gene-by-exposure interaction was found for CBD or BeS. CONCLUSIONS: Risk of CBD increases with E69 allele frequency and increasing exposure, although no gene by environment interaction was found. A decreased risk of BeS with increasing exposure and lack of exposure response in CBD cases may be due to the limitations of reconstructed exposure estimates. Although reducing exposure may not prevent BeS, it may reduce CBD and the associated health effects, especially in those carrying E69 alleles.
Assuntos
Beriliose/genética , Berílio/toxicidade , Cadeias beta de HLA-DP/genética , Exposição Ocupacional/efeitos adversos , Beriliose/epidemiologia , Estudos de Casos e Controles , Doença Crônica , Feminino , Genótipo , Humanos , Masculino , Polimorfismo Genético , Estudos RetrospectivosRESUMO
PURPOSE OF REVIEW: Sarcoidosis is an idiopathic granulomatous disease that primarily affects the lungs. Several lines of evidence suggest that occupational exposures are associated with disease risk. This review critically evaluates studies using the Bradford Hill criteria for causation to determine if a causal relationship can be established between occupational exposure and sarcoidosis. RECENT FINDINGS: Large epidemiological studies have proposed multiple occupational exposures associated with sarcoidosis but lack consistency of results. Many convincing studies demonstrate an association between World Trade Center (WTC) dust and sarcoidosis, which illustrates a causal relationship based on the fulfillment of the Bradford Hill criteria. Studies describing an association between silica/metals and sarcoidosis are intriguing but fulfill a limited number of the Bradford Hill criteria and warrant further investigation before a causal relationship can be determined. Finally, we also discuss preliminary studies associating sarcoidosis phenotypes with specific occupational exposures. SUMMARY: Using the Bradford Hill criteria for causation, we demonstrate that WTC dust has a causative relationship with sarcoidosis, which reinforces the theory that sarcoidosis is an exposure-related disease. More research is needed to determine other specific occupational exposures causing disease.
Assuntos
Doenças Profissionais , Exposição Ocupacional , Sarcoidose , Poeira , Humanos , Pulmão , Doenças Profissionais/epidemiologia , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Sarcoidose/epidemiologia , Sarcoidose/etiologia , Dióxido de Silício/toxicidadeRESUMO
INTRODUCTION: Sarcoidosis is a multiorgan granulomatous disorder thought to be triggered and influenced by gene-environment interactions. Sarcoidosis affects 45-300/100 000 individuals in the USA and has an increasing mortality rate. The greatest gap in knowledge about sarcoidosis pathobiology is a lack of understanding about the underlying immunological mechanisms driving progressive pulmonary disease. The objective of this study is to define the lung-specific and blood-specific longitudinal changes in the adaptive immune response and their relationship to progressive and non-progressive pulmonary outcomes in patients with recently diagnosed sarcoidosis. METHODS AND ANALYSIS: The BRonchoscopy at Initial sarcoidosis diagnosis Targeting longitudinal Endpoints study is a US-based, NIH-sponsored longitudinal blood and bronchoscopy study. Enrolment will occur over four centres with a target sample size of 80 eligible participants within 18 months of tissue diagnosis. Participants will undergo six study visits over 18 months. In addition to serial measurement of lung function, symptom surveys and chest X-rays, participants will undergo collection of blood and two bronchoscopies with bronchoalveolar lavage separated by 6 months. Freshly processed samples will be stained and flow-sorted for isolation of CD4 +T helper (Th1, Th17.0 and Th17.1) and T regulatory cell immune populations, followed by next-generation RNA sequencing. We will construct bioinformatic tools using this gene expression to define sarcoidosis endotypes that associate with progressive and non-progressive pulmonary disease outcomes and validate the tools using an independent cohort. ETHICS AND DISSEMINATION: The study protocol has been approved by the Institutional Review Boards at National Jewish Hospital (IRB# HS-3118), University of Iowa (IRB# 201801750), Johns Hopkins University (IRB# 00149513) and University of California, San Francisco (IRB# 17-23432). All participants will be required to provide written informed consent. Findings will be disseminated via journal publications, scientific conferences, patient advocacy group online content and social media platforms.
Assuntos
Sarcoidose Pulmonar , Sarcoidose , Líquido da Lavagem Broncoalveolar , Broncoscopia , Humanos , Estudos Multicêntricos como Assunto , Estudos Observacionais como Assunto , Linfócitos T Reguladores , Células Th17Assuntos
Nicotina , Sarcoidose Pulmonar , Humanos , Sarcoidose Pulmonar/tratamento farmacológico , Fumaça , Fumar , NicotianaRESUMO
Background Previous gene expression studies have identified genes IFNγ, TNFα, RNase 3, CXCL9, and CD55 as potential biomarkers for sarcoidosis and/or chronic beryllium disease (CBD). We hypothesized that differential expression of these genes could function as diagnostic biomarkers for sarcoidosis and CBD, and prognostic biomarkers for sarcoidosis. Study Design/Methods We performed RT-qPCR on whole blood samples from CBD (n = 132), beryllium sensitized (BeS) (n = 109), and sarcoidosis (n = 99) cases and non-diseased controls (n = 97) to determine differential expression of target genes. We then performed logistic regression modeling and generated ROC curves to determine which genes could most accurately differentiate: 1) CBD versus sarcoidosis 2) CBD versus BeS 3) sarcoidosis versus controls 4) non-progressive versus progressive sarcoidosis. Results CD55 and TNFα were significantly upregulated, while CXCL9 was significantly downregulated in CBD compared to sarcoidosis (p < 0.05). The ROC curve from the logistic regression model demonstrated high discriminatory ability of the combination of CD55, TNFα, and CXCL9 to distinguish between CBD and sarcoidosis with an AUC of 0.98. CD55 and TNFα were significantly downregulated in sarcoidosis compared to controls (p < 0.05). The ROC curve from the model showed a reasonable discriminatory ability of CD55 and TNFα to distinguish between sarcoidosis and controls with an AUC of 0.86. There was no combination of genes that could accurately differentiate between CBD and BeS or sarcoidosis phenotypes. Interpretation CD55, TNFα and CXCL9 expression levels can accurately differentiate between CBD and sarcoidosis, while CD55 and TNFα expression levels can accurately differentiate sarcoidosis and controls.
Assuntos
Beriliose/diagnóstico , Beriliose/genética , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Sarcoidose Pulmonar/diagnóstico , Sarcoidose Pulmonar/genética , Adulto , Idoso , Biomarcadores/metabolismo , Antígenos CD55/genética , Antígenos CD55/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Doença Crônica , Diagnóstico Diferencial , Proteína Catiônica de Eosinófilo/genética , Proteína Catiônica de Eosinófilo/metabolismo , Feminino , Marcadores Genéticos , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
PURPOSE OF REVIEW: Epidemiological and clinical observations as well as familial clustering support the existence of a genetic predisposition to sarcoidosis. In this article, we review the most recent findings in genetics of sarcoidosis and discuss how the identification of risk alleles may help advancing our understanding of disease etiology and development. RECENT FINDINGS: Genetic studies of sarcoidosis phenotypes have identified novel and ancestry-specific associations. Gene-environment interaction studies highlighted the importance of integrating genetic information when assessing the relationship between sarcoidosis and environmental exposures. A case-control-family study revealed that the heritability of sarcoidosis is only 49%, suggesting the existence of additional important contributors to disease risk. The application of whole-exome sequencing has identified associations with disease activity and prognosis. Finally, gene expression studies of circulating immune cells have identified shared and unique pathways between sarcoidosis and other granulomatous diseases. SUMMARY: Sarcoidosis genetic research has led to the identification of a number of associations with both sarcoidoses per se and disease phenotypes. Newer sequencing technologies are likely to increase the number of genetic variants associated with sarcoidosis. However, studying phenotypically and ethnically homogeneous patient subsets remains critically important regardless of the genetic approach used.
Assuntos
Sarcoidose , Predisposição Genética para Doença/genética , Humanos , Fenótipo , Sarcoidose/genética , Sequenciamento do ExomaRESUMO
BACKGROUND: Sarcoidosis is a multisystem granulomatous disease of unknown origin with a variable and often unpredictable course and pattern of organ involvement. In this study we sought to identify specific bronchoalveolar lavage (BAL) cell gene expression patterns indicative of distinct disease phenotypic traits. METHODS: RNA sequencing by Ion Torrent Proton was performed on BAL cells obtained from 215 well-characterised patients with pulmonary sarcoidosis enrolled in the multicentre Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Weighted gene co-expression network analysis and nonparametric statistics were used to analyse genome-wide BAL transcriptome. Validation of results was performed using a microarray expression dataset of an independent sarcoidosis cohort (Freiburg, Germany; n=50). RESULTS: Our supervised analysis found associations between distinct transcriptional programmes and major pulmonary phenotypic manifestations of sarcoidosis including T-helper type 1 (Th1) and Th17 pathways associated with hilar lymphadenopathy, transforming growth factor-ß1 (TGFB1) and mechanistic target of rapamycin (MTOR) signalling with parenchymal involvement, and interleukin (IL)-7 and IL-2 with airway involvement. Our unsupervised analysis revealed gene modules that uncovered four potential sarcoidosis endotypes including hilar lymphadenopathy with increased acute T-cell immune response; extraocular organ involvement with PI3K activation pathways; chronic and multiorgan disease with increased immune response pathways; and multiorgan involvement, with increased IL-1 and IL-18 immune and inflammatory responses. We validated the occurrence of these endotypes using gene expression, pulmonary function tests and cell differentials from Freiburg. CONCLUSION: Taken together, our results identify BAL gene expression programmes that characterise major pulmonary sarcoidosis phenotypes and suggest the presence of distinct disease molecular endotypes.